Recent two-dimensional infrared (2D-IR) experiments on a short peptide 3(10)-helix in chloroform solvent [E. H. G. Backus et al., J. Phys. Chem. B 113, 13405 (2009)] revealed an intriguing temperature dependence of the homogeneous line width, which was interpreted in terms of a dynamical transition of the peptide. To explain these findings, extensive molecular dynamics simulations at various temperatures were performed in order to construct the free energy landscape of the system. The study recovers the familiar picture of a glass-forming system, which below the glass transition temperature T-g is trapped in various energy basins, while it diffuses freely between these basins above Tg. In fact, one finds at T-g approximate to 270 K a sharp rise of the fluctuations of the backbone dihedral angles, which reflects conformational transitions of the peptide. The corresponding C=O frequency fluctuations are found to be a sensitive probe of the peptide conformational dynamics from femtosecond to nanosecond time scales and lead to 2D-IR spectra that qualitatively match the experiment. The calculated homogeneous line width, however, does not show the biphasic temperature dependence observed in experiment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462961]