Attention-based deep neural network for driver behavior recognition

被引:27
|
作者
Xiao, Weichu [1 ,2 ]
Liu, Hongli [1 ]
Ma, Ziji [1 ]
Chen, Weihong [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[2] Hunan City Univ, Coll Informat & Elect Engn, Yiyang, Peoples R China
关键词
Attention; Deep learning; Driver behavior recognition; Residual networks; SYSTEM; ASSISTANCE;
D O I
10.1016/j.future.2022.02.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Driver behavior recognition is crucial for traffic safety in intelligent transportation systems. To understand the driver distraction behavior, deep learning methods has been used to learn the hierarchical features of receptive field images. However, most of existing studies focus on investing in spatial components based on the convolutional neural network for visual analysis. In this study, an attention based deep neural network (ADNet) method is proposed for driver behavior recognition. The ADNet framework is first presented, which integrates the lightweight attention block into the deep learning model to strengthen the representative power of the model. Then, the channel attention (CA) block is designed to model inter-channel dependencies in the ADNet. Furthermore, the spatial attention block is combined with the CA for adaptive feature extraction. Data augmentation is used in the data preprocessing stage to improve recognition performance. The effectiveness of the proposed method is verified on the distraction dataset of American University in Cairo (AUC) and the real dataset of Hunan University (HNU). The ADNet method achieves a Top-1 accuracy of 98.48%, which outperforms the state-of-the-art methods.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:152 / 161
页数:10
相关论文
共 50 条
  • [21] A Neural Autoregressive Approach to Attention-based Recognition
    Yin Zheng
    Richard S. Zemel
    Yu-Jin Zhang
    Hugo Larochelle
    International Journal of Computer Vision, 2015, 113 : 67 - 79
  • [22] EEG emotion recognition using attention-based convolutional transformer neural network
    Gong, Linlin
    Li, Mingyang
    Zhang, Tao
    Chen, Wanzhong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [23] 4D attention-based neural network for EEG emotion recognition
    Guowen Xiao
    Meng Shi
    Mengwen Ye
    Bowen Xu
    Zhendi Chen
    Quansheng Ren
    Cognitive Neurodynamics, 2022, 16 : 805 - 818
  • [24] A Hybrid Attention-Based Deep Neural Network for Simultaneous Multi-Sensor Pruning and Human Activity Recognition
    Zhou, Yu
    Yang, Zhuodi
    Zhang, Xiao
    Wang, Yufan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24): : 25363 - 25372
  • [25] 4D attention-based neural network for EEG emotion recognition
    Xiao, Guowen
    Shi, Meng
    Ye, Mengwen
    Xu, Bowen
    Chen, Zhendi
    Ren, Quansheng
    COGNITIVE NEURODYNAMICS, 2022, 16 (04) : 805 - 818
  • [26] ADNNet: Attention-based deep neural network for Air Quality Index prediction
    Wu, Xiankui
    Gu, Xinyu
    See, K. W.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [27] Attention-based Deep Neural Network for Wind Power and Solar Radiation Prediction
    Varshini, U. Shivani Sri
    Perumal, Murukessan
    Srinivas, M.
    Subramanyam, R. B. V.
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [28] Breast Cancer Cell Segmentation Using Attention-Based Deep Neural Network
    Patra, Ankita
    Barpanda, Nalini Kanta
    Sethy, Prabira Kumar
    Das, Ashis
    Behera, Santi Kumari
    Nanda, Amlan
    Proceedings - 2023 IEEE World Conference on Applied Intelligence and Computing, AIC 2023, 2023, : 628 - 631
  • [29] Residential Appliance Detection Using Attention-based Deep Convolutional Neural Network
    Deng, Chunyu
    Wu, Kehe
    Wang, Binbin
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (02): : 621 - 633
  • [30] Modification and Evaluation of Attention-Based Deep Neural Network for Structural Crack Detection
    Yuan, Hangming
    Jin, Tao
    Ye, Xiaowei
    SENSORS, 2023, 23 (14)