A Hybrid Attention-Based Deep Neural Network for Simultaneous Multi-Sensor Pruning and Human Activity Recognition

被引:16
|
作者
Zhou, Yu [1 ]
Yang, Zhuodi [1 ]
Zhang, Xiao [2 ]
Wang, Yufan [3 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] South Cent Univ Nationalities, Dept Comp Sci, Wuhan 430074, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, Dept Ind Engn & Management, Shanghai 200240, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2022年 / 9卷 / 24期
基金
中国国家自然科学基金;
关键词
Sensors; Feature extraction; Task analysis; Sensor phenomena and characterization; Sensor fusion; Wearable sensors; Computer architecture; Attention mechanism; feature selection; human activity recognition; sensor pruning; sparse group Lasso (sgLasso); SENSORS;
D O I
10.1109/JIOT.2022.3196170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularity and development of Internet of Things (IoT) technology, human activity recognition using IoT devices such as wearable sensors can be implemented for various applications. Due to the complexity of activity recognition, multiple homogeneous or heterogeneous sensors are used to obtain excessive information in most wearable activity recognition systems. However, the increased number of sensors and the way of multichannel signal data bring huge challenges to human activity recognition tasks. How to select suitable sensor channels to balance the computational complexity and recognition accuracy has become a major issue. In this article, we extend the sparse group Lasso mechanism to human activity recognition tasks and propose a hybrid attention-based multi-sensor pruning and feature selection deep neural network, called HAP-DNN. This architecture is able to further perform feature selection on the basis of sensor pruning. HAP-DNN consists of three detachable modules: 1) a feature compression & reconstruction module for sensor feature information fusion and restoration; 2) a feature weight calculation module for calculating sensor channel weights and feature weights; and 3) a learning module for classification, which can be regarded as a filter feature selection method. Four public activity recognition data sets are used to verify our proposed architecture, and the experimental results show that HAP-DNN achieves the best classification performance with the least number of retained feature channels.
引用
收藏
页码:25363 / 25372
页数:10
相关论文
共 50 条
  • [1] A Novel Attention-Based Convolution Neural Network for Human Activity Recognition
    Zheng, Ge
    IEEE SENSORS JOURNAL, 2021, 21 (23) : 27015 - 27025
  • [2] Radar Human Activity Recognition with an Attention-Based Deep Learning Network
    Huan, Sha
    Wu, Limei
    Zhang, Man
    Wang, Zhaoyue
    Yang, Chao
    SENSORS, 2023, 23 (06)
  • [3] Attention-based deep neural network for driver behavior recognition
    Xiao, Weichu
    Liu, Hongli
    Ma, Ziji
    Chen, Weihong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 132 : 152 - 161
  • [4] Attention-based convolutional neural network for deep face recognition
    Hefei Ling
    Jiyang Wu
    Junrui Huang
    Jiazhong Chen
    Ping Li
    Multimedia Tools and Applications, 2020, 79 : 5595 - 5616
  • [5] Attention-based convolutional neural network for deep face recognition
    Ling, Hefei
    Wu, Jiyang
    Huang, Junrui
    Chen, Jiazhong
    Li, Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 5595 - 5616
  • [6] Multi-sensor fusion based optimized deep convolutional neural network for boxing punch activity recognition
    Jayakumar, Brindha
    Govindarajan, Nallavan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART P-JOURNAL OF SPORTS ENGINEERING AND TECHNOLOGY, 2024,
  • [7] Attention-Based Hybrid Deep Learning Network for Human Activity Recognition Using WiFi Channel State Information
    Mekruksavanich, Sakorn
    Phaphan, Wikanda
    Hnoohom, Narit
    Jitpattanakul, Anuchit
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [8] AHRNN: Attention-Based Hybrid Robust Neural Network for emotion recognition
    Xu, Ke
    Liu, Bin
    Tao, Jianhua
    Lv, Zhao
    Fan, Cunhang
    Song, Leichao
    COGNITIVE COMPUTATION AND SYSTEMS, 2022, 4 (01) : 85 - 95
  • [9] Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
    Sakorn Mekruksavanich
    Anuchit Jitpattanakul
    Scientific Reports, 13