AHRNN: Attention-Based Hybrid Robust Neural Network for emotion recognition

被引:3
|
作者
Xu, Ke [1 ,2 ]
Liu, Bin [2 ]
Tao, Jianhua [1 ,2 ,3 ]
Lv, Zhao [1 ]
Fan, Cunhang [2 ]
Song, Leichao [2 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Anhui Prov Key Lab Multimodal Cognit Computat, Hefei 230601, Peoples R China
[2] Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
affective computing; artificial intelligence; artificial neural networks;
D O I
10.1049/ccs2.12038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to solve the problem that the existing methods cannot effectively capture the semantic emotion of the sentence when faced with the lack of cross-language corpus, it is difficult to effectively perform cross-language sentiment analysis, we propose a neural network architecture called the Attention-Based Hybrid Robust Neural Network. The proposed architecture includes pre-trained word embedding with fine-tuning training to obtain prior semantic information, two sub-networks and attention mechanism to capture the global semantic emotional information in the text, and a fully connected layer and softmax function to jointly perform final emotional classification. The Convolutional Neural Networks sub-network captures the local semantic emotional information of the text, the BiLSTM sub-network captures the contextual semantic emotional information of the text, and the attention mechanism dynamically integrates the semantic emotional information to obtain key emotional information. We conduct experiments on Chinese (International Conference on Natural Language Processing and Chinese Computing) and English (SST) datasets. The experiment is divided into three subtasks to evaluate the superiority of our method. It improves the recognition accuracy of single sentence positive/negative classification from 79% to 86% in the single-language emotion recognition task. The recognition performance of fine-grained emotional tags is also improved by 9.6%. The recognition accuracy of cross-language emotion recognition tasks has also been improved by 1.5%. Even in the face of faulty data, the performance of our model is not significantly reduced when the error rate is less than 20%. These experimental results prove the superiority of our method.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [1] EEG emotion recognition using attention-based convolutional transformer neural network
    Gong, Linlin
    Li, Mingyang
    Zhang, Tao
    Chen, Wanzhong
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [2] 4D attention-based neural network for EEG emotion recognition
    Guowen Xiao
    Meng Shi
    Mengwen Ye
    Bowen Xu
    Zhendi Chen
    Quansheng Ren
    [J]. Cognitive Neurodynamics, 2022, 16 : 805 - 818
  • [3] 4D attention-based neural network for EEG emotion recognition
    Xiao, Guowen
    Shi, Meng
    Ye, Mengwen
    Xu, Bowen
    Chen, Zhendi
    Ren, Quansheng
    [J]. COGNITIVE NEURODYNAMICS, 2022, 16 (04) : 805 - 818
  • [4] Speech Emotion Recognition via Generation using an Attention-based Variational Recurrent Neural Network
    Baruah, Murchana
    Banerjee, Bonny
    [J]. INTERSPEECH 2022, 2022, : 4710 - 4714
  • [5] Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
    Zhang, Pengwei
    Min, Chongdan
    Zhang, Kangjia
    Xue, Wen
    Chen, Jingxia
    [J]. FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [6] Efficient Emotion Recognition based on Hybrid Emotion Recognition Neural Network
    Ou, Yang-Yen
    Su, Bo-Hao
    Tseng, Shih-Pang
    Hsu, Liu-Yi-Cheng
    Wang, Jhing-Fa
    Kuan, Ta-Wen
    [J]. 2018 INTERNATIONAL CONFERENCE ON ORANGE TECHNOLOGIES (ICOT), 2018,
  • [7] An attention-based hybrid deep learning model for EEG emotion recognition
    Zhang, Yong
    Zhang, Yidie
    Wang, Shuai
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2305 - 2313
  • [8] An attention-based hybrid deep learning model for EEG emotion recognition
    Yong Zhang
    Yidie Zhang
    Shuai Wang
    [J]. Signal, Image and Video Processing, 2023, 17 : 2305 - 2313
  • [9] Hierarchical Attention-Based Multimodal Fusion Network for Video Emotion Recognition
    Liu, Xiaodong
    Li, Songyang
    Wang, Miao
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [10] Attention-based deep neural network for driver behavior recognition
    Xiao, Weichu
    Liu, Hongli
    Ma, Ziji
    Chen, Weihong
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 132 : 152 - 161