Evolutionary Optimization of Low-Discrepancy Sequences

被引:27
|
作者
De Rainville, Francois-Michel [1 ]
Gagne, Christian [1 ]
Teytaud, Olivier
Laurendeau, Denis [1 ]
机构
[1] Univ Laval, Lab Vis & Syst Numer, Dept Genie Elect & Genie Informat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasi-random; Halton sequence; nearly orthogonal Latin hypercube; optimization; evolutionary algorithm; MONTE-CARLO METHODS; ALGORITHMS; DIMENSION; EFFICIENT; DESIGN;
D O I
10.1145/2133390.2133393
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Low-discrepancy sequences provide a way to generate quasi-random numbers of high dimensionality with a very high level of uniformity. The nearly orthogonal Latin hypercube and the generalized Halton sequence are two popular methods when it comes to generate low-discrepancy sequences. In this article, we propose to use evolutionary algorithms in order to find optimized solutions to the combinatorial problem of configuring generators of these sequences. Experimental results show that the optimized sequence generators behave at least as well as generators from the literature for the Halton sequence and significantly better for the nearly orthogonal Latin hypercube.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] LOW-DISCREPANCY POINT SETS
    NIEDERREITER, H
    [J]. MONATSHEFTE FUR MATHEMATIK, 1986, 102 (02): : 155 - 167
  • [42] Constructing a new class of low-discrepancy sequences by using the β-adic transformation
    Ninomiya, S
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 403 - 418
  • [43] ALGORITHM-738 - PROGRAMS TO GENERATE NIEDERREITERS LOW-DISCREPANCY SEQUENCES
    BRATLEY, P
    FOX, BL
    NIEDERREITER, H
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1994, 20 (04): : 494 - 495
  • [44] Low-discrepancy sequences for piecewise smooth functions on the two-dimensional torus
    Brandolini, Luca
    Colzani, Leonardo
    Gigante, Giacomo
    Travaglini, Giancarlo
    [J]. JOURNAL OF COMPLEXITY, 2016, 33 : 1 - 13
  • [45] Studying the Impact of Initialization for Population-Based Algorithms with Low-Discrepancy Sequences
    Ashraf, Adnan
    Pervaiz, Sobia
    Bangyal, Waqas Haider
    Nisar, Kashif
    Ibrahim, Ag Asri Ag
    Rodrigues, Joel J. P. C.
    Rawat, Danda B.
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [46] A construction of low-discrepancy sequences involving finite-row digital (t, s)-sequences
    Hofer, Roswitha
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 171 (01): : 77 - 89
  • [47] On the use of randomized low-discrepancy sequences in sampling-based motion planning
    Sánchez, A
    Osorio, MA
    [J]. MICAI 2005: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2005, 3789 : 980 - 989
  • [48] Sequences with Low-Discrepancy Blue-Noise 2-D Projections
    Perrier, Helene
    Coeurjolly, David
    Xie, Feng
    Pharr, Matt
    Hanrahan, Pat
    Ostromoukhov, Victor
    [J]. COMPUTER GRAPHICS FORUM, 2018, 37 (02) : 339 - 353
  • [49] Volume Calculation of CT lung Lesions basedon Halton Low-discrepancy Sequences
    Wang, Liansheng
    Li, Shusheng
    Li, Shou
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [50] Interval exchange transformations and low-discrepancy
    Weiss, Christian
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 399 - 410