Evolutionary Optimization of Low-Discrepancy Sequences

被引:27
|
作者
De Rainville, Francois-Michel [1 ]
Gagne, Christian [1 ]
Teytaud, Olivier
Laurendeau, Denis [1 ]
机构
[1] Univ Laval, Lab Vis & Syst Numer, Dept Genie Elect & Genie Informat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasi-random; Halton sequence; nearly orthogonal Latin hypercube; optimization; evolutionary algorithm; MONTE-CARLO METHODS; ALGORITHMS; DIMENSION; EFFICIENT; DESIGN;
D O I
10.1145/2133390.2133393
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Low-discrepancy sequences provide a way to generate quasi-random numbers of high dimensionality with a very high level of uniformity. The nearly orthogonal Latin hypercube and the generalized Halton sequence are two popular methods when it comes to generate low-discrepancy sequences. In this article, we propose to use evolutionary algorithms in order to find optimized solutions to the combinatorial problem of configuring generators of these sequences. Experimental results show that the optimized sequence generators behave at least as well as generators from the literature for the Halton sequence and significantly better for the nearly orthogonal Latin hypercube.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Studying the effect of using low-discrepancy sequences to initialize population-based optimization algorithms
    Omran, Mahamed G. H.
    al-Sharhan, Salah
    Salman, Ayed
    Clerc, Maurice
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (02) : 457 - 480
  • [32] Numerical integration of singular integrands using low-discrepancy sequences
    Bernhard Klinger
    [J]. Computing, 1997, 59 : 223 - 236
  • [33] Low-discrepancy sequences using duality and global function fields
    Niederreiter, Harald
    Ozbudak, Ferruh
    [J]. ACTA ARITHMETICA, 2007, 130 (01) : 79 - 97
  • [34] Constructing a new class of low-discrepancy sequences by using the β-adic transformation
    Ninomiya, Syoiti
    [J]. 1998, Elsevier (47) : 2 - 5
  • [35] Hybrid Differential Evolution using Low-Discrepancy Sequences for Image Segmentation
    Nakib, A.
    Daachi, B.
    Siarry, P.
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 634 - 640
  • [36] Initializing PSO with Probability Distributions and Low-discrepancy Sequences: The Comparative Results
    Thangaraj, Radha
    Pant, Millie
    Deep, Kusum
    [J]. 2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1120 - +
  • [37] Random sampling from low-discrepancy sequences:: Applications to option pricing
    Ökten, G
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2002, 35 (11-12) : 1221 - 1234
  • [38] A CONSTRUCTION OF LOW-DISCREPANCY SEQUENCES USING GLOBAL FUNCTION-FIELDS
    XING, CP
    NIEDERREITER, H
    [J]. ACTA ARITHMETICA, 1995, 73 (01) : 87 - 102
  • [39] On the use of low-discrepancy sequences in non-holonomic motion planning
    Sánchez, A
    Zapata, R
    Lanzoni, C
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2003, : 3764 - 3769
  • [40] ENHANCING ACCURACY OF DEEP LEARNING ALGORITHMS BY TRAINING WITH LOW-DISCREPANCY SEQUENCES
    Mishra, Siddhartha
    Rusch, T. Konstantin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1811 - 1834