A characterization of the Kostrikin radical of a Lie algebra

被引:11
|
作者
Garcia, Esther [1 ]
Gomez Lozano, Miguel [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada, Mostoles 28933, Madrid, Spain
[2] Univ Malaga, Dept Algebra Geometria & Topol, Malaga 29071, Spain
关键词
Lie algebra; Absolute zero divisor; Kostrikin radical; Strongly prime ideal; m-Sequence; SOCLE;
D O I
10.1016/j.jalgebra.2011.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study if the Kostrikin radical of a Lie algebra is the intersection of all its strongly prime ideals, and prove that this result is true for Lie algebras over fields of characteristic zero, for Lie algebras arising from associative algebras over rings of scalars with no 2-torsion, for Artinian Lie algebras over arbitrary rings of scalars, and for some others. In all these cases, this implies that nondegenerate Lie algebras are subdirect products of strongly prime Lie algebras, providing a structure theory for Lie algebras without any restriction on their dimension. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:266 / 283
页数:18
相关论文
共 50 条
  • [41] On the multiplier of a Lie algebra
    Yankosky, B
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 1 - 6
  • [42] An atavistic Lie algebra
    Fairlie, DB
    Zachos, CK
    PHYSICS LETTERS B, 2006, 637 (1-2) : 123 - 127
  • [43] A GROUP OF A LIE ALGEBRA
    HEEREMA, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1970, 244 : 112 - &
  • [44] Lie algebra of transposition
    Marin, Ivan
    JOURNAL OF ALGEBRA, 2007, 310 (02) : 742 - 774
  • [45] ON LIE ALGEBRA ACTIONS
    Cushman, Richard H.
    Sniatycki, Jedrzej
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (04): : 1115 - 1129
  • [46] On the String Lie Algebra
    Salim Rivière
    Friedrich Wagemann
    Algebras and Representation Theory, 2015, 18 : 1071 - 1099
  • [47] On the mirabolic Lie algebra
    Kirillov, A. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2014, 48 (02) : 145 - 149
  • [48] Lie algebra fermions
    Troost, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (42)
  • [49] ABELIANIZATIONS OF DERIVATION LIE ALGEBRAS OF THE FREE ASSOCIATIVE ALGEBRA AND THE FREE LIE ALGEBRA
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (05) : 965 - 1002
  • [50] The simple non-Lie Malcev algebra as a Lie-Yamaguti algebra
    Bremner, Murray R.
    Douglas, Andrew
    JOURNAL OF ALGEBRA, 2012, 358 : 269 - 291