A characterization of the Kostrikin radical of a Lie algebra

被引:11
|
作者
Garcia, Esther [1 ]
Gomez Lozano, Miguel [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Matemat Aplicada, Mostoles 28933, Madrid, Spain
[2] Univ Malaga, Dept Algebra Geometria & Topol, Malaga 29071, Spain
关键词
Lie algebra; Absolute zero divisor; Kostrikin radical; Strongly prime ideal; m-Sequence; SOCLE;
D O I
10.1016/j.jalgebra.2011.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study if the Kostrikin radical of a Lie algebra is the intersection of all its strongly prime ideals, and prove that this result is true for Lie algebras over fields of characteristic zero, for Lie algebras arising from associative algebras over rings of scalars with no 2-torsion, for Artinian Lie algebras over arbitrary rings of scalars, and for some others. In all these cases, this implies that nondegenerate Lie algebras are subdirect products of strongly prime Lie algebras, providing a structure theory for Lie algebras without any restriction on their dimension. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:266 / 283
页数:18
相关论文
共 50 条
  • [11] Local solvability of the prime radical of a weakly artinian Lie algebra
    Pikhtilkova, O. A.
    Pikhtilkov, S. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (03) : 549 - 551
  • [12] Local solvability of the prime radical of a weakly artinian Lie algebra
    O. A. Pikhtilkova
    S. A. Pikhtilkov
    Siberian Mathematical Journal, 2016, 57 : 549 - 551
  • [13] On the Lie enveloping algebra of a pre-Lie algebra
    Oudom, J. -M.
    Guin, D.
    JOURNAL OF K-THEORY, 2008, 2 (01) : 147 - 167
  • [14] ] The Lie Conformal Algebra of a Block Type Lie Algebra
    Gao, Ming
    Xu, Ying
    Yue, Xiaoqing
    ALGEBRA COLLOQUIUM, 2015, 22 (03) : 367 - 382
  • [15] On the Lie Enveloping Algebra of a Post-Lie Algebra
    Ebrahimi-Fard, Kurusch
    Lundervold, Alexander
    Munthe-Kaas, Hans Z.
    JOURNAL OF LIE THEORY, 2015, 25 (04) : 1139 - 1165
  • [16] On the Lie enveloping algebra of a pre-Lie algebra.
    Oudom, JM
    Guin, D
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (05) : 331 - 336
  • [17] Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra
    Movshev, M. V.
    Schwarz, A.
    Xu, Renjun
    NUCLEAR PHYSICS B, 2012, 854 (02) : 483 - 503
  • [18] ALGEBRAIC LIE ALGEBRA BUNDLES AND DERIVATIONS OF LIE ALGEBRA BUNDLES
    Monica, M., V
    Rajendra, R.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2024, 35 : 95 - 107
  • [19] Lie Bialgebra Structures on the Lie Algebra £ Related to the Virasoro Algebra
    Chen, Xue
    Su, Yihong
    Zheng, Jia
    SYMMETRY-BASEL, 2023, 15 (01):
  • [20] DERIVATIONS OF THE LIE-ALGEBRA STRUCTURE OF THE ENVELOPING ALGEBRA OF A SEMISIMPLE LIE-ALGEBRA
    DEWILDE, M
    JASON, A
    MUKILA, PMW
    TOUSSET, E
    VANHAUTEN, F
    COCAIKO, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (11): : 1299 - 1304