Singularities of duals of Grassmannians

被引:4
|
作者
Holweck, Frederic [1 ]
机构
[1] Univ Technol Belfort Montbeliard, Lab M3M, F-90010 Belfort, France
关键词
Algebraic geometry; Projectively dual variety; Grassmannian; Secant varieties; Singular locus; Hyperdeterminant; Second fundamental form; Representation of semi-simple Lie algebras; PROJECTIVE GEOMETRY; VARIETIES;
D O I
10.1016/j.jalgebra.2011.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X subset of P-N be a smooth irreducible nondegenerate projective variety and let X* subset of P-N denote its dual variety. The locus of bitangent hyperplanes, i.e. hyperplanes tangent to at least two points of X, is a component of the singular locus of X*. In this paper we provide a sufficient condition for this component to be of maximal dimension and show how it can be used to determine which dual varieties of Grassmannians are normal. That last part may be compared to what has been done for hyperdeterminants by J. Weyman and A. Zelevinsky (1996) in [23]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 50 条
  • [41] Equations for polar Grassmannians
    Pasini, Antonio
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (11): : 2224 - 2240
  • [42] Secants of Lagrangian Grassmannians
    Boralevi, Ada
    Buczynski, Jaroslaw
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (04) : 725 - 739
  • [43] GLSMs for exotic Grassmannians
    Gu, Wei
    Sharpe, Eric
    Zou, Hao
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [44] SEMICHARACTERISTICS OF ORIENTED GRASSMANNIANS
    STONG, RE
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (01) : 97 - 103
  • [45] Secants of Lagrangian Grassmannians
    Ada Boralevi
    Jarosław Buczyński
    Annali di Matematica Pura ed Applicata, 2011, 190 : 725 - 739
  • [46] Feynman integrals of Grassmannians
    Feng, Tai-Fu
    Zhang, Hai-Bin
    Chang, Chao-Hsi
    PHYSICAL REVIEW D, 2022, 106 (11)
  • [47] Caps Embedded in Grassmannians
    G. L. Ebert
    K. Metsch
    T. Szönyi
    Geometriae Dedicata, 1998, 70 : 181 - 196
  • [48] A characterization of symplectic Grassmannians
    Occhetta, Gianluca
    Conde, Luis E. Sola
    Watanabe, Kiwamu
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1421 - 1433
  • [49] Morphisms between Grassmannians
    Naldi, Angelo
    Occhetta, Gianluca
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2022, 98 (10) : 101 - 105
  • [50] A Γ-structure on Lagrangian Grassmannians
    Albers, Peter
    Frauenfelder, Urs
    Solomon, Jake P.
    COMMENTARII MATHEMATICI HELVETICI, 2014, 89 (04) : 929 - 936