Singularities of duals of Grassmannians

被引:4
|
作者
Holweck, Frederic [1 ]
机构
[1] Univ Technol Belfort Montbeliard, Lab M3M, F-90010 Belfort, France
关键词
Algebraic geometry; Projectively dual variety; Grassmannian; Secant varieties; Singular locus; Hyperdeterminant; Second fundamental form; Representation of semi-simple Lie algebras; PROJECTIVE GEOMETRY; VARIETIES;
D O I
10.1016/j.jalgebra.2011.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X subset of P-N be a smooth irreducible nondegenerate projective variety and let X* subset of P-N denote its dual variety. The locus of bitangent hyperplanes, i.e. hyperplanes tangent to at least two points of X, is a component of the singular locus of X*. In this paper we provide a sufficient condition for this component to be of maximal dimension and show how it can be used to determine which dual varieties of Grassmannians are normal. That last part may be compared to what has been done for hyperdeterminants by J. Weyman and A. Zelevinsky (1996) in [23]. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:369 / 384
页数:16
相关论文
共 50 条
  • [31] On natural maps from strata of quiver Grassmannians to ordinary Grassmannians
    Lee, Kyungyong
    Li, Li
    NONCOMMUTATIVE BIRATIONAL GEOMETRY, REPRESENTATIONS AND COMBINATORICS, 2013, 592 : 199 - +
  • [32] TRANSFINITE DUALS
    FINET, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 296 (01): : 47 - 50
  • [33] LOOPS IN DUALS
    HAGGARD, G
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (08): : 654 - 656
  • [34] Duals Invert
    Franco, Ignacio Lopez
    Street, Ross
    Wood, Richard J.
    APPLIED CATEGORICAL STRUCTURES, 2011, 19 (01) : 321 - 361
  • [35] Duals Invert
    Ignacio López Franco
    Ross Street
    Richard J. Wood
    Applied Categorical Structures, 2011, 19 : 321 - 361
  • [36] Rings with duals
    Baer, R
    AMERICAN JOURNAL OF MATHEMATICS, 1943, 65 : 569 - 584
  • [37] OUTLINES AND THEIR DUALS
    BRUCE, JW
    GIBLIN, PJ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1985, 50 (MAY) : 552 - 570
  • [38] Schubert Quiver Grassmannians
    Giovanni Cerulli Irelli
    Evgeny Feigin
    Markus Reineke
    Algebras and Representation Theory, 2017, 20 : 147 - 161
  • [39] Invariant functions on grassmannians
    Olafsson, Gestur
    Rubin, Boris
    RADON TRANSFORMS, GEOMETRY, AND WAVELETS, 2008, 464 : 201 - 211
  • [40] Grassmannians in frame theory
    Cahill, Jameson
    Li, Shidong
    WAVELETS AND SPARSITY XIV, 2011, 8138