Nanoscale optical pulse limiter enabled by refractory metallic quantum wells

被引:22
|
作者
Qian, Haoliang [1 ]
Li, Shilong [1 ]
Li, Yingmin [2 ]
Chen, Ching-Fu [1 ]
Chen, Wenfan [2 ]
Bopp, Steven Edward [2 ]
Lee, Yeon-Ui [1 ]
Xiong, Wei [2 ,3 ]
Liu, Zhaowei [1 ,2 ,4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Memory & Recording Res, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
2-PHOTON ABSORPTION; TITANIUM NITRIDE; PERFORMANCE; SUSPENSIONS; MECHANISMS;
D O I
10.1126/sciadv.aay3456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The past several decades have witnessed rapid development of high-intensity, ultrashort pulse lasers, enabling deeper laboratory investigation of nonlinear optics, plasma physics, and quantum science and technology than previously possible. Naturally, with their increasing use, the risk of accidental damage to optical detection systems rises commensurately. Thus, various optical limiting mechanisms and devices have been proposed. However, restricted by the weak optical nonlinearity of natural materials, state-of-the-art optical limiters rely on bulk liquid or solid media, operating in the transmission mode. Device miniaturization becomes complicated with these designs while maintaining superior integrability and controllability. Here, we demonstrate a reflection-mode pulse limiter (sub-100 nm) using nanoscale refractory films made of Al2O3/TiN/Al2O3 metallic quantum wells (MQWs), which provide large and ultrafast Kerr-type optical nonlinearities due to the quantum size effect of the MQW. Functional multilayers consisting of these MQWs could find important applications in nanophotonics, nonlinear optics, and meta-optics.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] OPTICAL SPECTROSCOPY OF EXCITONS IN QUANTUM WELLS
    ESAKI, L
    VINA, L
    MENDEZ, EE
    CHANG, LL
    JOURNAL OF LUMINESCENCE, 1988, 40-1 : 12 - 16
  • [32] OPTICAL STUDIES OF GAAS QUANTUM WELLS
    BASTARD, G
    JOURNAL OF LUMINESCENCE, 1988, 40-1 : 33 - 36
  • [33] Quantum Optical Binding of Nanoscale Particles
    Rudolph, Henning
    Delic, Uros
    Hornberger, Klaus
    Stickler, Benjamin A.
    PHYSICAL REVIEW LETTERS, 2024, 133 (23)
  • [34] Dipole-dipole interaction in nanoscale photonic quantum wells
    Singh, Mahi R.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (05): : 956 - 959
  • [35] Optical properties of tetrahedral quantum dot quantum wells
    Fonoberov, VA
    Pokatilov, EP
    Fomin, VM
    Devreese, JT
    Physics of Semiconductors, Pts A and B, 2005, 772 : 673 - 674
  • [36] Imaging optical near fields at metallic nanoscale voids
    Lacharmoise, P. D.
    Tognalli, N. G.
    Goni, A. R.
    Alonso, M. I.
    Fainstein, A.
    Cole, R. M.
    Baumberg, J. J.
    de Abajo, J. Garcia
    Bartlett, P. N.
    PHYSICAL REVIEW B, 2008, 78 (12):
  • [37] Storage and retrieval of light pulse in coupled quantum wells
    Liu, Jibing
    Liu, Na
    Shan, Chuanjia
    Li, Hong
    Liu, Tangkun
    Zheng, Anshou
    AIP ADVANCES, 2016, 6 (03)
  • [38] Spatial redistribution of energy in a nanosecond laser pulse by an organic optical limiter
    Robertson, J
    Milsom, P
    Duignan, J
    Bourhill, G
    OPTICS LETTERS, 2000, 25 (17) : 1258 - 1260
  • [39] FEMTOSECOND-PULSE DISTORTION IN QUANTUM-WELLS
    KIM, DS
    SHAH, J
    MILLER, DAB
    DAMEN, TC
    SCHAFER, W
    PFEIFFER, L
    PHYSICAL REVIEW B, 1993, 48 (24): : 17902 - 17905
  • [40] Nanoscale Distortions of Si Quantum Wells in Si/SiGe Quantum-Electronic Heterostructures
    Evans, P. G.
    Savage, D. E.
    Prance, J. R.
    Simmons, C. B.
    Lagally, M. G.
    Coppersmith, S. N.
    Eriksson, M. A.
    Schuelli, T. U.
    ADVANCED MATERIALS, 2012, 24 (38) : 5217 - 5221