Nanoscale optical pulse limiter enabled by refractory metallic quantum wells

被引:22
|
作者
Qian, Haoliang [1 ]
Li, Shilong [1 ]
Li, Yingmin [2 ]
Chen, Ching-Fu [1 ]
Chen, Wenfan [2 ]
Bopp, Steven Edward [2 ]
Lee, Yeon-Ui [1 ]
Xiong, Wei [2 ,3 ]
Liu, Zhaowei [1 ,2 ,4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Mat Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Ctr Memory & Recording Res, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
2-PHOTON ABSORPTION; TITANIUM NITRIDE; PERFORMANCE; SUSPENSIONS; MECHANISMS;
D O I
10.1126/sciadv.aay3456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The past several decades have witnessed rapid development of high-intensity, ultrashort pulse lasers, enabling deeper laboratory investigation of nonlinear optics, plasma physics, and quantum science and technology than previously possible. Naturally, with their increasing use, the risk of accidental damage to optical detection systems rises commensurately. Thus, various optical limiting mechanisms and devices have been proposed. However, restricted by the weak optical nonlinearity of natural materials, state-of-the-art optical limiters rely on bulk liquid or solid media, operating in the transmission mode. Device miniaturization becomes complicated with these designs while maintaining superior integrability and controllability. Here, we demonstrate a reflection-mode pulse limiter (sub-100 nm) using nanoscale refractory films made of Al2O3/TiN/Al2O3 metallic quantum wells (MQWs), which provide large and ultrafast Kerr-type optical nonlinearities due to the quantum size effect of the MQW. Functional multilayers consisting of these MQWs could find important applications in nanophotonics, nonlinear optics, and meta-optics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On-Chip Optical Power Limiter for Quantum Communications
    Alagappan, Gandhi
    Lim, Soon Thor
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (02)
  • [22] STM Induces Luminescence from Metallic Quantum Wells
    Christopher Matranga
    MRS Bulletin, 2001, 26 : 969 - 969
  • [23] ELECTRONIC STATES OF METALLIC SUPERLATTICES AND QUANTUM-WELLS
    MILLER, T
    SAMSAVAR, A
    MUELLER, M
    FRANKLIN, G
    CHIANG, TC
    PHYSICA SCRIPTA, 1990, T31 : 35 - 42
  • [24] STM induces luminescence from metallic quantum wells
    Matranga, C
    MRS BULLETIN, 2001, 26 (12) : 969 - 969
  • [25] Apparatus for the measurement of critical temperature in metallic quantum wells
    Maria Curie-Sklodowska Univ, Lublin, Poland
    Electron Technol (Warsaw), 3-4 (516-519):
  • [26] Optical properties of InGaN quantum wells
    Depts. Mat. and Elec. and Comp. Eng., University of California, Santa Barbara, CA 93106, United States
    不详
    不详
    不详
    Mater Sci Eng B Solid State Adv Technol, 1-3 (298-306):
  • [27] OPTICAL PROCESSES IN QUANTUM-WELLS
    SHAM, LJ
    ACTA PHYSICA POLONICA A, 1995, 87 (01) : 7 - 15
  • [28] MULTIPLE QUANTUM WELLS FOR OPTICAL LOGIC
    ROBINSON, AL
    SCIENCE, 1984, 225 (4664) : 822 - 824
  • [29] Optical refrigeration with coupled quantum wells
    Daveau, Raphael S.
    Tighineanu, Petru
    Lodahl, Peter
    Stobbe, Soren
    OPTICS EXPRESS, 2015, 23 (19): : 25340 - 25349
  • [30] Optical properties of InGaN quantum wells
    Chichibu, SF
    Abare, AC
    Mack, MP
    Minsky, MS
    Deguchi, T
    Cohen, D
    Kozodoy, P
    Fleischer, SB
    Keller, S
    Speck, JS
    Bowers, JE
    Hu, E
    Mishra, UK
    Coldren, LA
    DenBaars, SP
    Wada, K
    Sota, T
    Nakamura, S
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 59 (1-3): : 298 - 306