Iterative bundle-based decomposition for large-scale nonseparable convex optimization

被引:2
|
作者
Park, K [1 ]
Shin, YS [1 ]
机构
[1] Hongik Univ, Dept Ind Engn, Mapo Ku, Seoul 121791, South Korea
关键词
convex programming; mathematical programming; nonlinear programming; optimization; quadratic programming;
D O I
10.1016/S0377-2217(97)00350-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
There has been considerable research in solving large-scale separable convex optimization problems. In this paper we present an algorithm for large-scale nonseparable smooth convex optimization problems with block-angular linear constraints. The solution of the problem is approximated by solving a sequence of structured separable quadratic programs. The Bundle-based decomposition (BBD) method of Robinson (In: Prekopa, A., Szelezsan, J., Strazicky, B. (Eds.), System Modelling and Optimization, Springer, 1986, pp. 751-756; Annals de Institute Henri Poincare: Analyse Non Lineaire 6 (1989) 435-447) is applied to each separable quadratic program. We implement the algorithm and present computational experience. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:598 / 616
页数:19
相关论文
共 50 条
  • [41] A DECOMPOSITION-BASED OPTIMIZATION ALGORITHM FOR SCHEDULING LARGE-SCALE JOB SHOPS
    Zhang, Rui
    Wu, Cheng
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (09): : 2769 - 2780
  • [42] SHADE with Iterative Local Search for Large-Scale Global Optimization
    Molina, Daniel
    LaTorre, Antonio
    Herrera, Francisco
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1252 - 1259
  • [43] Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization
    De Leone, Renato
    Fasano, Giovanni
    Roma, Massimo
    Sergeyev, Yaroslav D.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (02) : 554 - 589
  • [44] Spectral clustering based on iterative optimization for large-scale and high-dimensional data
    Zhao, Yang
    Yuan, Yuan
    Nie, Feiping
    Wang, Qi
    NEUROCOMPUTING, 2018, 318 : 227 - 235
  • [45] Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization
    Renato De Leone
    Giovanni Fasano
    Massimo Roma
    Yaroslav D. Sergeyev
    Journal of Optimization Theory and Applications, 2020, 186 : 554 - 589
  • [46] Cooperative Particle Swarm Optimization Decomposition Methods for Large-scale Optimization
    Clark, Mitchell
    Ombuki-Berman, Beatrice
    Aksamit, Nicholas
    Engelbrecht, Andries
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1582 - 1591
  • [47] New limited memory bundle method for large-scale nonsmooth optimization
    Haarala, M
    Miettinen, K
    Mäkelä, MM
    OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (06): : 673 - 692
  • [48] Combining Lagrangian decomposition and excessive gap smoothing technique for solving large-scale separable convex optimization problems
    Quoc Tran Dinh
    Carlo Savorgnan
    Moritz Diehl
    Computational Optimization and Applications, 2013, 55 : 75 - 111
  • [49] Combining Lagrangian decomposition and excessive gap smoothing technique for solving large-scale separable convex optimization problems
    Quoc Tran Dinh
    Savorgnan, Carlo
    Diehl, Moritz
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 75 - 111
  • [50] Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach
    Wang, Guotao
    Zhao, Wei
    Qiu, Rui
    Liao, Qi
    Lin, Zhenjia
    Wang, Chang
    Zhang, Haoran
    ENERGY, 2023, 282