Iterative bundle-based decomposition for large-scale nonseparable convex optimization

被引:2
|
作者
Park, K [1 ]
Shin, YS [1 ]
机构
[1] Hongik Univ, Dept Ind Engn, Mapo Ku, Seoul 121791, South Korea
关键词
convex programming; mathematical programming; nonlinear programming; optimization; quadratic programming;
D O I
10.1016/S0377-2217(97)00350-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
There has been considerable research in solving large-scale separable convex optimization problems. In this paper we present an algorithm for large-scale nonseparable smooth convex optimization problems with block-angular linear constraints. The solution of the problem is approximated by solving a sequence of structured separable quadratic programs. The Bundle-based decomposition (BBD) method of Robinson (In: Prekopa, A., Szelezsan, J., Strazicky, B. (Eds.), System Modelling and Optimization, Springer, 1986, pp. 751-756; Annals de Institute Henri Poincare: Analyse Non Lineaire 6 (1989) 435-447) is applied to each separable quadratic program. We implement the algorithm and present computational experience. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:598 / 616
页数:19
相关论文
共 50 条
  • [31] On lower complexity bounds for large-scale smooth convex optimization
    Guzman, Cristobal
    Nemirovski, Arkadi
    JOURNAL OF COMPLEXITY, 2015, 31 (01) : 1 - 14
  • [32] A Computational Study of the Homogeneous Algorithm for Large-scale Convex Optimization
    Erling D. Andersen
    Yinyu Ye
    Computational Optimization and Applications, 1998, 10 : 243 - 269
  • [33] Convex constrained optimization for large-scale generalized Sylvester equations
    A. Bouhamidi
    K. Jbilou
    M. Raydan
    Computational Optimization and Applications, 2011, 48 : 233 - 253
  • [34] Convex constrained optimization for large-scale generalized Sylvester equations
    Bouhamidi, A.
    Jbilou, K.
    Raydan, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (02) : 233 - 253
  • [35] A computational study of the homogeneous algorithm for large-scale convex optimization
    Andersen, ED
    Ye, YY
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 10 (03) : 243 - 269
  • [36] LARGE-SCALE REGULARIZED PORTFOLIO SELECTION VIA CONVEX OPTIMIZATION
    Zhao, Ziping
    Palomar, Daniel P.
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [37] Convex optimization strategies for coordinating large-scale robot formations
    Derenick, Jason C.
    Spletzer, John R.
    IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (06) : 1252 - 1259
  • [38] AN ALGORITHM FOR DECOMPOSITION COORDINATION OF LARGE-SCALE CONVEX-PROGRAMMING PROBLEMS
    OSMAN, MSA
    ELARINY, AK
    REFAAT, THM
    COMPUTERS & OPERATIONS RESEARCH, 1988, 15 (05) : 457 - 469
  • [39] Graph-Based Deep Decomposition for Overlapping Large-Scale Optimization Problems
    Zhang, Xin
    Ding, Bo-Wen
    Xu, Xin-Xin
    Li, Jian-Yu
    Zhan, Zhi-Hui
    Qian, Pengjiang
    Fang, Wei
    Lai, Kuei-Kuei
    Zhang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04): : 2374 - 2386
  • [40] A decomposition framework based on memorized binary search for large-scale optimization problems
    Liang, Qingwei
    Pan, Jeng-Shyang
    Chu, Shu-Chuan
    Kong, Lingping
    Li, Wei
    INFORMATION SCIENCES, 2024, 679