Iterative bundle-based decomposition for large-scale nonseparable convex optimization

被引:2
|
作者
Park, K [1 ]
Shin, YS [1 ]
机构
[1] Hongik Univ, Dept Ind Engn, Mapo Ku, Seoul 121791, South Korea
关键词
convex programming; mathematical programming; nonlinear programming; optimization; quadratic programming;
D O I
10.1016/S0377-2217(97)00350-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
There has been considerable research in solving large-scale separable convex optimization problems. In this paper we present an algorithm for large-scale nonseparable smooth convex optimization problems with block-angular linear constraints. The solution of the problem is approximated by solving a sequence of structured separable quadratic programs. The Bundle-based decomposition (BBD) method of Robinson (In: Prekopa, A., Szelezsan, J., Strazicky, B. (Eds.), System Modelling and Optimization, Springer, 1986, pp. 751-756; Annals de Institute Henri Poincare: Analyse Non Lineaire 6 (1989) 435-447) is applied to each separable quadratic program. We implement the algorithm and present computational experience. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:598 / 616
页数:19
相关论文
共 50 条
  • [1] Bundle-based decomposition for large-scale convex optimization: Error estimate and application to block-angular linear programs
    Medhi, Deepankar
    Mathematical Programming, Series B, 1994, 66 (1-2): : 79 - 101
  • [2] BUNDLE-BASED DECOMPOSITION FOR LARGE-SCALE CONVEX-OPTIMIZATION - ERROR ESTIMATE AND APPLICATION TO BLOCK-ANGULAR LINEAR-PROGRAMS
    MEDHI, D
    MATHEMATICAL PROGRAMMING, 1994, 66 (01) : 79 - 101
  • [3] BUNDLE-BASED DECOMPOSITION - CONDITIONS FOR CONVERGENCE
    ROBINSON, SM
    ANNALES DE LINSTITUT HENRI POINCARE, VOL 6 SUPPL: ANALYSE NON LINEAIRE : CONTRIBUTIONS EN LHONNEUR DE J J MOREAU, 1989, : 435 - 477
  • [4] Fast inexact decomposition algorithms for large-scale separable convex optimization
    Tran-Dinh, Q.
    Necoara, I.
    Diehl, M.
    OPTIMIZATION, 2016, 65 (02) : 325 - 356
  • [5] An Intra-Iterative Interference Cancellation Detector for Large-Scale MIMO Communications Based on Convex Optimization
    Chen, Jienan
    Zhang, Zhenbing
    Lu, Hao
    Hu, Jianhao
    Sobelman, Gerald E.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (11) : 2062 - 2072
  • [6] Diagonal bundle method with convex and concave updates for large-scale nonconvex and nonsmooth optimization
    Karmitsa, N.
    Gaudioso, M.
    Joki, K.
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (02): : 363 - 382
  • [7] Convex Optimization based Downlink Precoding for Large-scale MIMO
    Wang, Shengchu
    Li, Yunzhou
    Wang, Jing
    2014 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2014, : 218 - 223
  • [8] Thevenin decomposition and large-scale optimization
    Bertsekas, DP
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (01) : 1 - 15
  • [9] On the softplus penalty for large-scale convex optimization
    Li, Meng
    Grigas, Paul
    Atamturk, Alper
    OPERATIONS RESEARCH LETTERS, 2023, 51 (06) : 666 - 672
  • [10] BUNDLE-BASED DECOMPOSITION - DESCRIPTION AND PRELIMINARY-RESULTS
    ROBINSON, SM
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 84 : 751 - 756