Cellular resolutions of noncommutative toric algebras from superpotentials

被引:10
|
作者
Craw, Alastair [1 ]
Velez, Alexander Quintero [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Noncommutative algebras; Bimodule resolutions; Toric geometry; DONALDSON-THOMAS INVARIANTS; QUIVER REPRESENTATIONS; MODULI;
D O I
10.1016/j.aim.2011.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper constructs cellular resolutions for classes of noncommutative algebras, analogous to those introduced by Bayer and Sturmfels (1998) [2] in the commutative case. To achieve this we generalise the dimer model construction of noncommutative crepant resolutions of three-dimensional tone algebras by associating a superpotential and a notion of consistency to toric algebras of arbitrary dimension. For abelian skew group algebras and algebraically consistent dimer model algebras, we introduce a cell complex Delta in a real torus whose cells describe uniformly all maps in the minimal projective bimodule resolution of A. We illustrate the general construction of Delta for an example in dimension four arising from a tilting bundle on a smooth tone Fano threefold to highlight the importance of the incidence function on Delta. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1516 / 1554
页数:39
相关论文
共 50 条
  • [41] RESOLUTIONS AND COHOMOLOGIES OF TORIC SHEAVES: THE AFFINE CASE
    Perling, Markus
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (09)
  • [42] Noncommutative contact algebras
    Omori, H
    Maeda, Y
    Miyazaki, N
    Yoshioka, A
    DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 333 - 338
  • [43] Noncommutative uniform algebras
    Abel, M
    Jarosz, K
    STUDIA MATHEMATICA, 2004, 162 (03) : 213 - 218
  • [44] Noncommutative Lie algebras
    Dzhumadil'daev, A
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 108 - 112
  • [45] Non-commutative resolutions of toric varieties
    Faber, Eleonore
    Muller, Greg
    Smith, Karen E.
    ADVANCES IN MATHEMATICS, 2019, 351 : 236 - 274
  • [46] TORIC IDEALS FOR HIGH VERONESE SUBRINGS OF TORIC ALGEBRAS
    Shibuta, Takafumi
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 895 - 905
  • [47] Factorization of Dirac operators on toric noncommutative manifolds
    Kaad, Jens
    van Suijlekom, Walter D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 282 - 300
  • [48] Moduli spaces of instantons on toric noncommutative manifolds
    Brain, Simon
    Landi, Giovanni
    van Suijlekom, Walter D.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (05) : 1129 - 1193
  • [49] On Noncommutative Operator Graphs Generated by Resolutions of Identity
    G. G. Amosov
    A. S. Mokeev
    Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 8 - 16
  • [50] On the Gauss algebra of toric algebras
    Herzog, Juergen
    Jafari, Raheleh
    Nejad, Abbas Nasrollah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 51 (01) : 1 - 17