Cellular resolutions of noncommutative toric algebras from superpotentials

被引:10
|
作者
Craw, Alastair [1 ]
Velez, Alexander Quintero [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Noncommutative algebras; Bimodule resolutions; Toric geometry; DONALDSON-THOMAS INVARIANTS; QUIVER REPRESENTATIONS; MODULI;
D O I
10.1016/j.aim.2011.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper constructs cellular resolutions for classes of noncommutative algebras, analogous to those introduced by Bayer and Sturmfels (1998) [2] in the commutative case. To achieve this we generalise the dimer model construction of noncommutative crepant resolutions of three-dimensional tone algebras by associating a superpotential and a notion of consistency to toric algebras of arbitrary dimension. For abelian skew group algebras and algebraically consistent dimer model algebras, we introduce a cell complex Delta in a real torus whose cells describe uniformly all maps in the minimal projective bimodule resolution of A. We illustrate the general construction of Delta for an example in dimension four arising from a tilting bundle on a smooth tone Fano threefold to highlight the importance of the incidence function on Delta. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1516 / 1554
页数:39
相关论文
共 50 条
  • [21] Minimal and cellular free resolutions over polynomial OI-algebras
    Fieldsteel, Nathan
    Nagel, Uwe
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [22] Enriques diagrams, resolutions and toric clusters
    Campillo, A.
    Gonzalez-Sprinberg, G.
    Lejeune-Jalabert, M.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 320 (03):
  • [23] ENRIQUES DIAGRAMS, RESOLUTIONS AND TORIC CLUSTERS
    CAMPILLO, A
    GONZALEZSPRINBERG, G
    LEJEUNEJALABERT, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (03): : 329 - 334
  • [24] Instantons and vortices on noncommutative toric varieties
    Cirio, Lucio S.
    Landi, Giovanni
    Szabo, Richard J.
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (09)
  • [25] Modular curvature for toric noncommutative manifolds
    Liu, Yang
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (02) : 511 - 575
  • [26] Noncommutative Grobner bases, and projective resolutions
    Green, EL
    COMPUTATIONAL METHODS FOR REPRESENTATIONS OF GROUPS AND ALGEBRAS, 1999, 173 : 29 - 60
  • [27] Small toric resolutions of toric varieties of string polytopes with small indices
    Cho, Yunhyung
    Kim, Yoosik
    Lee, Eunjeong
    Park, Kyeong-Dong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (01)
  • [28] Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials
    Xuejun Xia
    Libin Li
    Czechoslovak Mathematical Journal, 2022, 72 : 1029 - 1044
  • [29] Noncommutative Koszul algebras from combinatorial topology
    Cassidy, Thomas
    Phan, Christopher
    Shelton, Brad
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 646 : 45 - 63
  • [30] Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials
    Xia, Xuejun
    Li, Libin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1029 - 1044