A finite element algorithm for parameter identification of material models for fluid saturated porous media

被引:5
|
作者
Mahnken, R
Steinmann, P
机构
[1] Univ Kaiserslautern, Lehrstuhl Tech Mech, D-67653 Kaiserslautern, Germany
[2] Univ Hannover, Inst Baumech & Numer Mech, D-30167 Hannover, Germany
关键词
fluid-saturated porous media; parameter identification; sensitivity analysis; optimization; finite element method; quadratic Drucker-Prager model; linear Darcy model;
D O I
10.1002/nag.136
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this contribution an algorithm for parameter identification of geometrically linear Terzaghi-Biot-type fluid-saturated porous media is proposed, in which non-uniform distributions of the state variables such as stresses, strains and fluid pore pressure are taken into account. To this end a least-squares functional consisting of experimental data and simulated data is minimized, whereby the latter are obtained with the finite element method. This strategy allows parameter identification based on in situ experiments. In order to improve the efficiency of the minimization process, a gradient-based optimization algorithm is applied, and therefore the corresponding sensitivity analysis for the coupled two-phase problem is described in a systematic manner. For illustrative purpose, the performance of the algorithm is demonstrated for a slope stability problem, in which a quadratic Drucker-Prager plasticity model for the solid and a linear Darcy law for the fluid are combined. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:415 / 434
页数:20
相关论文
共 50 条
  • [31] ON FINITE DYNAMIC EQUATIONS FOR FLUID-SATURATED POROUS-MEDIA
    HLERS, W
    KIUBIK, J
    ACTA MECHANICA, 1994, 105 (1-4) : 101 - 117
  • [32] Modelling of localisation at finite inelastic strains in fluid saturated porous media
    Sanavia, L
    Schrefler, BA
    Stein, E
    Steinmann, P
    IUTAM SYMPOSIUM ON THEORETICAL AND NUMERICAL METHODS IN CONTINUUM MECHANICS OF POROUS MATERIALS, 2001, 87 : 239 - 244
  • [33] A wavelet finite element method for the 2-D wave equation in fluid-saturated porous media
    Zhang, XM
    Liu, KA
    Liu, JQ
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2005, 48 (05): : 1156 - 1166
  • [34] Penalty finite element method for nonlinear dynamic response of viscous fluid-saturated biphase porous media
    Yan, B.
    Zhang, R.Q.
    Applied Mathematics and Mechanics (English Edition), 2000, 21 (12) : 1381 - 1389
  • [35] PENALTY FINITE ELEMENT METHOD FOR NONLINEAR DYNAMIC RESPONSE OF VISCOUS FLUID-SATURATED BIPHASE POROUS MEDIA
    严波
    张汝清
    AppliedMathematicsandMechanics(EnglishEdition), 2000, (12) : 1381 - 1389
  • [36] Mixed finite element method for quasi-static problems of fluid-saturated biphase porous media
    Yan, B.
    Liu, Z.F.
    Zhang, X.W.
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2001, 18 (02):
  • [37] A finite element approach for multiphase fluid flow in porous media
    Mroginski, Javier L.
    Ariel Di Rado, H.
    Beneyto, Pablo A.
    Awruch, Armando M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (01) : 76 - 91
  • [38] Parameter identification for coupled finite element-boundary element models
    Xiang, ZH
    Swoboda, G
    Cen, ZZ
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2002, 26 (03) : 193 - 204
  • [39] PARAMETRIC MODEL-ORDER REDUCTION FOR VISCOELASTIC FINITE ELEMENT MODELS: AN APPLICATION TO MATERIAL PARAMETER IDENTIFICATION
    van de Walle, Axel
    Deckers, Elke
    Desmet, Wim
    Rouleau, Lucie
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: MAJOR CHALLENGES IN ACOUSTICS, NOISE AND VIBRATION RESEARCH, 2015, 2015,
  • [40] An Extended Finite Element Model for Fluid Flow in Fractured Porous Media
    Liu, Fei
    Zhao, Li-qiang
    Liu, Ping-li
    Luo, Zhi-feng
    Li, Nian-yin
    Wang, Pei-shan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015