Complex Generalized Killing Spinors on Riemannian Spin c Manifolds

被引:4
|
作者
Grosse, Nadine [1 ]
Nakad, Roger [2 ]
机构
[1] Univ Leipzig, Math Inst, D-04009 Leipzig, Germany
[2] Notre Dame Univ Louaize, Fac Nat & Appl Sci, Dept Math & Stat, Zouk Mikael, Zouk Mosbeh, Lebanon
关键词
Spin(c) structures; complex generalized Killing spinors; imaginary generalized and imaginary Killing spinors; associated differential forms; conformal Killing vector fields; DIRAC-OPERATOR; 1ST EIGENVALUE; PARALLEL; SCALAR;
D O I
10.1007/s00025-014-0401-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the study of generalized Killing spinors on Riemannian Spin (c) manifolds started by Moroianu and Herzlich to complex Killing functions. We prove that such spinor fields are always real spin (c) Killing spinors or imaginary generalized Spin (c) Killing spinors, providing that the dimension of the manifold is greater or equal to 4. Moreover, we examine which Riemannian Spin (c) manifolds admit imaginary and imaginary generalized Killing spinors.
引用
收藏
页码:177 / 195
页数:19
相关论文
共 50 条
  • [41] On generalized recurrent Riemannian manifolds
    K. Arslan
    U. C. De
    C. Murathan
    A. Yildiz
    Acta Mathematica Hungarica, 2009, 123 : 27 - 39
  • [42] RIEMANNIAN MANIFOLDS WITH MANY KILLING VECTOR FIELDS
    STEHNEY, AK
    MILLMAN, RS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A580 - A580
  • [43] Cohomogeneity one Riemannian manifolds and killing fields
    Podesta, F
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1995, 5 (04) : 311 - 320
  • [44] Hyperbolic Evolution Equations, Lorentzian Holonomy, and Riemannian Generalised Killing Spinors
    Leistner, Thomas
    Lischewski, Andree
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 33 - 82
  • [45] Hyperbolic Evolution Equations, Lorentzian Holonomy, and Riemannian Generalised Killing Spinors
    Thomas Leistner
    Andree Lischewski
    The Journal of Geometric Analysis, 2019, 29 : 33 - 82
  • [46] Riemannian optimization method on generalized flag manifolds for complex and subspace ICA
    Nishimori, Yasunori
    Akaho, Shotaro
    Plumbley, Mark D.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 89 - 96
  • [47] Deformations of Killing spinors on Sasakian and 3-Sasakian manifolds
    van Coevering, Craig
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (01) : 53 - 91
  • [48] Spinors of real type as polyforms and the generalized Killing equation
    Vicente Cortés
    Calin Lazaroiu
    C. S. Shahbazi
    Mathematische Zeitschrift, 2021, 299 : 1351 - 1419
  • [49] Spinors of real type as polyforms and the generalized Killing equation
    Cortes, Vicente
    Lazaroiu, Calin
    Shahbazi, C. S.
    MATHEMATISCHE ZEITSCHRIFT, 2021,
  • [50] Spinors of real type as polyforms and the generalized Killing equation
    Cortes, Vicente
    Lazaroiu, Calin
    Shahbazi, C. S.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (3-4) : 1351 - 1419