Complex Generalized Killing Spinors on Riemannian Spin c Manifolds

被引:4
|
作者
Grosse, Nadine [1 ]
Nakad, Roger [2 ]
机构
[1] Univ Leipzig, Math Inst, D-04009 Leipzig, Germany
[2] Notre Dame Univ Louaize, Fac Nat & Appl Sci, Dept Math & Stat, Zouk Mikael, Zouk Mosbeh, Lebanon
关键词
Spin(c) structures; complex generalized Killing spinors; imaginary generalized and imaginary Killing spinors; associated differential forms; conformal Killing vector fields; DIRAC-OPERATOR; 1ST EIGENVALUE; PARALLEL; SCALAR;
D O I
10.1007/s00025-014-0401-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the study of generalized Killing spinors on Riemannian Spin (c) manifolds started by Moroianu and Herzlich to complex Killing functions. We prove that such spinor fields are always real spin (c) Killing spinors or imaginary generalized Spin (c) Killing spinors, providing that the dimension of the manifold is greater or equal to 4. Moreover, we examine which Riemannian Spin (c) manifolds admit imaginary and imaginary generalized Killing spinors.
引用
收藏
页码:177 / 195
页数:19
相关论文
共 50 条
  • [31] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483
  • [32] Conformal Killing forms on Riemannian manifolds
    Semmelmann, U
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 503 - 527
  • [34] Conformal Killing forms on Riemannian manifolds
    Uwe Semmelmann
    Mathematische Zeitschrift, 2003, 245 : 503 - 527
  • [35] A Note on Killing Calculus on Riemannian Manifolds
    Deshmukh, Sharief
    Ishan, Amira
    Al-Shaikh, Suha B.
    Ozgur, Cihan
    MATHEMATICS, 2021, 9 (04) : 1 - 13
  • [36] On Killing Vector Fields on Riemannian Manifolds
    Deshmukh, Sharief
    Belova, Olga
    MATHEMATICS, 2021, 9 (03) : 1 - 17
  • [37] Imaginary Killing Spinors on (2, n - 2)-Manifolds
    Shafiee, M.
    Bahrampour, Y.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2009, 30 (01) : 81 - 88
  • [38] On generalized recurrent Riemannian manifolds
    Arslan, K.
    De, U. C.
    Murathan, C.
    Yildiz, A.
    ACTA MATHEMATICA HUNGARICA, 2009, 123 (1-2) : 27 - 39
  • [39] ON GENERALIZED SEMISYMMETRIC RIEMANNIAN MANIFOLDS
    Mikes, Josef
    Stepanov, Sergey E.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2013, 91
  • [40] On generalized recurrent Riemannian manifolds
    Singh, H
    Khan, Q
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 87 - 95