Generalized Semicommutative and Skew Armendariz Ideals

被引:0
|
作者
Nikmehr, M. J. [1 ]
机构
[1] KN Toosi Univ Technol, Tehran, Iran
关键词
RINGS;
D O I
10.1007/s11253-015-1015-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the concepts of semicommutative, skew Armendariz, Abelian, reduced, and symmetric left ideals and study the relationships between these concepts.
引用
收藏
页码:1354 / 1368
页数:15
相关论文
共 50 条
  • [31] ON NIL SKEW ARMENDARIZ RINGS
    Habibi, M.
    Moussavi, A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (02)
  • [32] Generalized Semicommutative Rings
    Roy, Debraj
    Subedi, Tikaram
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (01) : 68 - 76
  • [33] Generalized skew derivations on Lie ideals in prime rings
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 219 - 225
  • [34] b-Generalized Skew Derivations on Lie Ideals
    De Filippis, Vincenzo
    Wei, Feng
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [35] Generalized Skew Derivations with Hypercommuting Conditions on Lie Ideals
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1053 - 1073
  • [36] b-Generalized Skew Derivations on Lie Ideals
    Vincenzo De Filippis
    Feng Wei
    Mediterranean Journal of Mathematics, 2018, 15
  • [37] Generalized Skew Derivations and Nilpotent Values on Lie Ideals
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    ALGEBRA COLLOQUIUM, 2019, 26 (04) : 589 - 614
  • [38] Generalized Derivations with Skew Nilpotent Values on Lie Ideals
    徐晓伟
    马晶
    牛凤文
    NortheasternMathematicalJournal, 2006, (02) : 241 - 252
  • [39] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225
  • [40] Generalized skew derivations on Lie ideals in prime rings
    Giovanni Scudo
    Ashutosh Pandey
    Balchand Prajapati
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)