Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy

被引:88
|
作者
Enderlein, J [1 ]
Gregor, I [1 ]
机构
[1] Forschungszentrum Julich, Inst Biol Informat Proc 1 & 2, D-52425 Julich, Germany
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2005年 / 76卷 / 03期
关键词
D O I
10.1063/1.1863399
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Fluorescence correlation spectroscopy (FCS) has become an important and widely used technique for many applications in physics, chemistry, and biology. Usually, FCS is measured with sensitive light detectors working in the photon-counting Geiger mode. A common property of such detectors is afterpulsing: the generation of spurious photon detection events after a genuine photon detection. Such afterpulsing causes a significant deviation of the measured autocorrelation function from its true value on a short time scale and can seriously influence derived parameters for fast processes such as triplet-state photophysics. Here, we discuss the impact of afterpulsing on FCS in detail. A new method is developed to eliminate afterpulsing effects by using time-correlated single-photon counting for separating the true fluorescence signal from afterpulsing events. (C) 2005 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Principles and Applications of Fluorescence Lifetime Correlation Spectroscopy
    Beranova, Lenka
    Humpolickova, Jana
    Hof, Martin
    [J]. OPTICAL SENSORS 2009, 2009, 7356
  • [12] Comparison of Background Corrected Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Correlation Spectroscopy: Dilution Series Revisited
    Ruettinger, Steffen
    Kapusta, Peter
    Patting, Matthias
    Wahl, Michael
    Macdonald, Rainer
    [J]. SINGLE MOLECULE SPECTROSCOPY AND IMAGING II, 2009, 7185
  • [13] Resolving Inhomogeneity Using Lifetime-Weighted Fluorescence Correlation Spectroscopy
    Ishii, Kunihiko
    Tahara, Tahei
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (38): : 12383 - 12391
  • [14] Quantifying Microsecond Transition Times Using Fluorescence Lifetime Correlation Spectroscopy
    Ghosh, Arindam
    Isbaner, Sebastian
    Veiga-Gutierrez, Manoel
    Gregor, Ingo
    Enderlein, Joerg
    Karedla, Narain
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (24): : 6022 - 6028
  • [15] Imaging Fluorescence-Correlation Spectroscopy for Measuring Fast Surface Diffusion at Liquid/Solid Interfaces
    Cooper, Justin T.
    Harris, Joel M.
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (15) : 7618 - 7626
  • [16] Detector for multichannel spectroscopy and fluorescence lifetime imaging on the picosecond timescale
    Kemnitz, K.
    Pfeifer, L.
    Ainbund, M.R.
    [J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 387 (1-2): : 86 - 87
  • [17] Detector for multichannel spectroscopy and fluorescence lifetime imaging on the picosecond timescale
    Kemnitz, K
    Pfeifer, L
    Ainbund, MR
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 387 (1-2): : 86 - 87
  • [18] PICOSECOND FLUORESCENCE LIFETIME DETECTOR
    BERNDT, K
    DURR, H
    PALME, D
    [J]. OPTICS COMMUNICATIONS, 1985, 55 (04) : 271 - 276
  • [19] Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy
    Digman, Michelle A.
    Gratton, Enrico
    [J]. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (02) : 273 - 282
  • [20] Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook
    Kapusta, Peter
    Machan, Radek
    Benda, Ales
    Hof, Martin
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (10) : 12890 - 12910