Development of PCM/carbon-based composite materials

被引:46
|
作者
Mantilla Gilart, Pablo [1 ]
Yedra Martinez, Angel [1 ]
Gonzalez Barriuso, Marina [1 ]
Manteca Martinez, Carmen [1 ]
机构
[1] Fdn Ctr Tecnol Componentes CTC, Adv Mat Area, Santander 39011, Cantabria, Spain
关键词
Expanded graphite; Carbon nanotubes; Phase change material; Thermal conductivity; Thermal energy storage; THERMAL-ENERGY STORAGE; PHASE-CHANGE MATERIALS; CARBON NANOTUBE; GRAPHITE; CONDUCTIVITY;
D O I
10.1016/j.solmat.2012.06.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Innovative Phase Change Material (PCM)/carbon-based composite materials were developed. These materials show higher thermal conductivity than that of pure PCM. An increase of up to 576% in thermal conductivity was obtained. They consist of PCM embedded in a carbon-containing host matrix (expanded graphite or multiwall carbon nanotubes). Previously, different expansion methods were carried out on several types of graphite. A thorough characterization of the graphite was made using Isotherms BET (Brunauer-Emmett-Teller) method (N-2 adsorption), X-ray diffraction (XRD), Raman spectroscopy (RS) and Scanning Electron Microscopy (SEM) which allowed to understand the changes of the microstructure at the different expansion method stages and to select the most efficient expansion method with the most promising graphite. The surface area of the expanded graphite was increased up to 1267%. PCMs inside carbon-based matrices were integrated using an autoclave reactor in a novel way. The composites were thermally characterized by differential scanning calorimetry (DSC), thermal conductivity (TC) and thermal validation tests. These new materials are focused on electronic applications and plastic injection moulds, where high thermal conductivity is required. The objectives are to avoid peak temperature and reduce thermal oscillations, respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [31] A journey of materials development illustrated through shape memory alloy and carbon-based materials
    Dasgupta, Kinshuk
    Krishnan, Madangopal
    Kain, Vivekanand
    CURRENT SCIENCE, 2022, 123 (03): : 417 - 428
  • [32] Catalysis by novel carbon-based materials
    Likholobov, VA
    CATALYSIS BY UNIQUE METAL ION STRUCTURES IN SOLID MATRICES: FROM SCIENCE TO APPLICATION, 2001, 13 : 295 - 306
  • [33] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43
  • [34] Hydrothermal corrosion of carbon-based materials
    Gogotsi, Y
    Libera, J
    HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 5, PTS 1 AND 2, 2001, 369-3 : 982 - 982
  • [35] Fullerenes as precursors of carbon-based materials
    Milani, P
    Manfredini, M
    Bottani, CE
    SYNTHETIC METALS, 1996, 77 (1-3) : 81 - 83
  • [36] Plasma production in carbon-based materials
    Giuffreda, E.
    Delle Side, A.
    Nassisi, V.
    Krasa, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 406 : 225 - 228
  • [37] Carbon-based materials for electrochemical dechlorination
    Guoqiang Gan
    Guo Hong
    Wenjun Zhang
    Nano Research, 2023, 16 : 12543 - 12557
  • [38] Carbon-based optical limiting materials
    Yan Wang
    Mingzhe Lv
    Jin Guo
    Tingfeng Wang
    Junfeng Shao
    Dong Wang
    Ying-Wei Yang
    Science China Chemistry, 2015, 58 (12) : 1782 - 1791
  • [39] Carbon-based materials for electrochemical dechlorination
    Gan, Guoqiang
    Hong, Guo
    Zhang, Wenjun
    NANO RESEARCH, 2023, 16 (11) : 12543 - 12557
  • [40] Carbon-based optical limiting materials
    Wang, Yan
    Lv, Mingzhe
    Guo, Jin
    Wang, Tingfeng
    Shao, Junfeng
    Wang, Dong
    Yang, Ying-Wei
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (12) : 1782 - 1791