Development of PCM/carbon-based composite materials

被引:46
|
作者
Mantilla Gilart, Pablo [1 ]
Yedra Martinez, Angel [1 ]
Gonzalez Barriuso, Marina [1 ]
Manteca Martinez, Carmen [1 ]
机构
[1] Fdn Ctr Tecnol Componentes CTC, Adv Mat Area, Santander 39011, Cantabria, Spain
关键词
Expanded graphite; Carbon nanotubes; Phase change material; Thermal conductivity; Thermal energy storage; THERMAL-ENERGY STORAGE; PHASE-CHANGE MATERIALS; CARBON NANOTUBE; GRAPHITE; CONDUCTIVITY;
D O I
10.1016/j.solmat.2012.06.014
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Innovative Phase Change Material (PCM)/carbon-based composite materials were developed. These materials show higher thermal conductivity than that of pure PCM. An increase of up to 576% in thermal conductivity was obtained. They consist of PCM embedded in a carbon-containing host matrix (expanded graphite or multiwall carbon nanotubes). Previously, different expansion methods were carried out on several types of graphite. A thorough characterization of the graphite was made using Isotherms BET (Brunauer-Emmett-Teller) method (N-2 adsorption), X-ray diffraction (XRD), Raman spectroscopy (RS) and Scanning Electron Microscopy (SEM) which allowed to understand the changes of the microstructure at the different expansion method stages and to select the most efficient expansion method with the most promising graphite. The surface area of the expanded graphite was increased up to 1267%. PCMs inside carbon-based matrices were integrated using an autoclave reactor in a novel way. The composites were thermally characterized by differential scanning calorimetry (DSC), thermal conductivity (TC) and thermal validation tests. These new materials are focused on electronic applications and plastic injection moulds, where high thermal conductivity is required. The objectives are to avoid peak temperature and reduce thermal oscillations, respectively. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 50 条
  • [1] Development of carbon-based composite materials for energy storage.
    Carratala-Abril, J.
    Rey-Martinez, L.
    Beneito-Ruiz, R.
    Vilaplana-Cerda, J.
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 : S240 - S245
  • [2] Carbon-Based Composite Materials for Electrodes
    Manjunatha, Jamballi G.
    Uslu, Bengi
    MATERIALS, 2022, 15 (14)
  • [3] Carbon-Based Composite Absorbing Materials
    Lu, Shuiqing
    Liu, Yichang
    Xie, Zhipeng
    Zhang, Da
    Yang, Bin
    Liang, Feng
    PROGRESS IN CHEMISTRY, 2024, 36 (04) : 556 - 574
  • [4] Irradiation behavior of carbon-based composite materials
    Virgilev, YS
    Ponomarev, OV
    Ponomareva, EV
    INORGANIC MATERIALS, 1996, 32 (09) : 971 - 979
  • [5] Carbon-based composite materials for supercapacitor electrodes: a review
    Borenstein, Arie
    Hanna, Ortal
    Attias, Ran
    Luski, Shalom
    Brousse, Thierry
    Aurbach, Doron
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) : 12653 - 12672
  • [6] Review on carbon-based composite materials for capacitive deionization
    Liu, Yong
    Nie, Chunyang
    Liu, Xinjuan
    Xu, Xingtao
    Sun, Zhuo
    Pan, Likun
    RSC ADVANCES, 2015, 5 (20): : 15205 - 15225
  • [7] Development of Carbon-Based Nano-Composite Materials for Direct Electron Transfer Based Biosensors
    Sanzo, Gabriella
    Tortolini, Cristina
    Antiochia, Riccarda
    Favero, Gabriele
    Mazzei, Franco
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (05) : 3423 - 3428
  • [8] Development of protective and passive thermal control coatings on carbon-based composite materials for application in space
    Francke, M
    Fritsche, B
    Moc, A
    Heimann, RB
    Iskanderova, Z
    Kleiman, JI
    PROTECTION OF MATERIALS AND STRUCTURES FROM SPACE ENVIRONMENT, 2003, 5 : 451 - 460
  • [9] Carbon-Based Materials at Nanoscale
    Xia, Dan
    Otyepka, Michal
    Li, Xi
    Liu, Wei
    Zheng, Qingbin
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [10] Carbon-Based Materials for Thermoelectrics
    Chakraborty, Pranay
    Ma, Tengfei
    Zahiri, Amir Hassan
    Cao, Lei
    Wang, Yan
    ADVANCES IN CONDENSED MATTER PHYSICS, 2018, 2018