Number representation using generalized (-β)-transformation

被引:13
|
作者
Dombek, D. [1 ]
Masakova, Z. [1 ]
Pelantova, E. [1 ]
机构
[1] Czech Tech Univ, Dept Math FNSPE, Prague 12000 2, Czech Republic
关键词
Numeration system; Negative base;
D O I
10.1016/j.tcs.2011.08.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study non-standard number systems with negative base -beta. Instead of the Ito-Sadahiro definition, based on the transformation T-beta of the interval [-beta/beta+1, 1/beta+1) into itself, we suggest a generalization using an interval [l, l + 1) with l is an element of (-1, 0]. Such numeration systems share many properties of positive base numeration introduced by Renyi, although the proofs are not always straightforward. In this paper we focus on the description of admissible digit strings and their periodicity. We address the question of the description of reference strings used in the admissibility condition. We give examples which contradict a result of Gora and show that in this aspect the negative base numeration significantly differs from the Renyi numeration. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6653 / 6665
页数:13
相关论文
共 50 条
  • [41] Transformation of microbiology data into a standardised data representation using OpenEHR
    Wulff, Antje
    Baier, Claas
    Ballout, Sarah
    Tute, Erik
    Sommer, Kim Katrin
    Kaase, Martin
    Sargeant, Anneka
    Drenkhahn, Cora
    Schlueter, Dirk
    Marschollek, Michael
    Scheithauer, Simone
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] On the representation of number concepts
    Zorzi, M
    Butterworth, B
    PROCEEDINGS OF THE NINETEENTH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 1997, : 1098 - 1098
  • [43] Transformation of microbiology data into a standardised data representation using OpenEHR
    Antje Wulff
    Claas Baier
    Sarah Ballout
    Erik Tute
    Kim Katrin Sommer
    Martin Kaase
    Anneka Sargeant
    Cora Drenkhahn
    Dirk Schlüter
    Michael Marschollek
    Simone Scheithauer
    Scientific Reports, 11
  • [44] Representation number of a caterpillar
    Yahyaei, Laleh
    Katre, S.A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2017, 101 : 47 - 57
  • [45] The conceptual representation of number
    Patson, Nikole D.
    George, Gerret
    Warren, Tessa
    QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2014, 67 (07): : 1349 - 1365
  • [46] A study of complex scaling transformation using the Wigner representation of wavefunctions
    Kapralova-Zdanska, Petra Ruth
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (20):
  • [47] NUMERICAL ANALYSIS OF THE INFLUENCE OF INTERNAL NUMBER REPRESENTATION ON ACCURACY OF COORDINATE TRANSFORMATION OF INDUSTRIAL ROBOTS.
    Duelen, G.
    Held, J.
    Kirchhoff, U.
    Robotics and Computer-Integrated Manufacturing, 1986, 3 (01) : 11 - 13
  • [48] EXTRACTION OF STRAIGHT-LINE SEGMENTS USING ROTATION TRANSFORMATION - GENERALIZED HOUGH TRANSFORMATION
    KANG, CW
    PARK, RH
    LEE, KH
    PATTERN RECOGNITION, 1991, 24 (07) : 633 - 641
  • [49] Transformation, encoding and representation
    Webb, B
    CURRENT BIOLOGY, 2006, 16 (06) : R184 - R185
  • [50] REPRESENTATION OF SMALL NUMBER WITHOUT A MAGICAL NUMBER
    MENS, LHM
    PERCEPTION, 1985, 14 (01) : A10 - A10