Number representation using generalized (-β)-transformation

被引:13
|
作者
Dombek, D. [1 ]
Masakova, Z. [1 ]
Pelantova, E. [1 ]
机构
[1] Czech Tech Univ, Dept Math FNSPE, Prague 12000 2, Czech Republic
关键词
Numeration system; Negative base;
D O I
10.1016/j.tcs.2011.08.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study non-standard number systems with negative base -beta. Instead of the Ito-Sadahiro definition, based on the transformation T-beta of the interval [-beta/beta+1, 1/beta+1) into itself, we suggest a generalization using an interval [l, l + 1) with l is an element of (-1, 0]. Such numeration systems share many properties of positive base numeration introduced by Renyi, although the proofs are not always straightforward. In this paper we focus on the description of admissible digit strings and their periodicity. We address the question of the description of reference strings used in the admissibility condition. We give examples which contradict a result of Gora and show that in this aspect the negative base numeration significantly differs from the Renyi numeration. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6653 / 6665
页数:13
相关论文
共 50 条
  • [21] Modeling generalized cylinders using direction map representation
    Lee, JH
    COMPUTER-AIDED DESIGN, 2005, 37 (08) : 837 - 846
  • [22] FILTER REALIZATION USING A GENERALIZED LAGRANGE POLYNOMIAL REPRESENTATION
    LIU, FC
    MARSHALL, TG
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1981, 9 (03) : 269 - 283
  • [23] Generalized information representation and compression using covariance union
    Bochardt, Ottmar
    Calhoun, Ryan
    Uhlmann, Jeffrey K.
    Julier, Simon J.
    2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 1520 - 1526
  • [24] Extended Generalized Feistel Networks Using Matrix Representation
    Berger, Thierry P.
    Minier, Marine
    Thomas, Gael
    SELECTED AREAS IN CRYPTOGRAPHY - SAC 2013, 2014, 8282 : 289 - 305
  • [25] ORBITAL MANEUVER FOR SPACECRAFT USING GENERALIZED CANONICAL TRANSFORMATION
    Ohtsuka, Yuki
    Uchiyama, Kenji
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 1305 - 1315
  • [26] Transformation-based verification using generalized retiming
    Kuehlmann, A
    Baumgartner, J
    COMPUTER AIDED VERIFICATION, PROCEEDINGS, 2001, 2102 : 104 - 117
  • [27] Identifying anticancer peptides by using a generalized chaos game representation
    Li Ge
    Jiaguo Liu
    Yusen Zhang
    Matthias Dehmer
    Journal of Mathematical Biology, 2019, 78 : 441 - 463
  • [29] Identifying anticancer peptides by using a generalized chaos game representation
    Ge, Li
    Liu, Jiaguo
    Zhang, Yusen
    Dehmer, Matthias
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 78 (1-2) : 441 - 463
  • [30] Representation and approximation of signals and systems using generalized Kautz functions
    Soumelidis, A
    Bokor, J
    Schipp, F
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3793 - 3795