Unveiling the S=3/2 Kitaev honeycomb spin liquids

被引:25
|
作者
Jin, Hui-Ke [1 ]
Natori, W. M. H. [2 ,3 ]
Pollmann, F. [4 ,5 ]
Knolle, J. [1 ,3 ,5 ]
机构
[1] Tech Univ Munich, Dept Phys TQM, James Franck Str 1, D-85748 Garching, Germany
[2] Inst Laue Langevin, BP 156,41 Ave Martyrs, F-38042 Grenoble 9, France
[3] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[4] Tech Univ Munich, Dept Phys CMT, James Franck Str 1, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
基金
欧洲研究理事会;
关键词
QUANTUM; PHYSICS; ANYONS;
D O I
10.1038/s41467-022-31503-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, material realizations of the spin 3/2 Kitaev honeycomb model have been proposed, but the model has not been solved by either analytical or numerical methods. Here the authors report exact results for the spin 3/2 model consistent with numerical simulations, and find gapped and gapless quantum spin liquids. The S=3/2 Kitaev honeycomb model (KHM) is a quantum spin liquid (QSL) state coupled to a static Z(2) gauge field. Employing an SO(6) Majorana representation of spin3/2's, we find an exact representation of the conserved plaquette fluxes in terms of static Z(2) gauge fields akin to the S=1/2 KHM which enables us to treat the remaining interacting matter fermion sector in a parton mean-field theory. We uncover a ground-state phase diagram consisting of gapped and gapless QSLs. Our parton description is in quantitative agreement with numerical simulations, and is furthermore corroborated by the addition of a [001] single ion anisotropy (SIA) which continuously connects the gapless Dirac QSL of our model with that of the S=1/2 KHM. In the presence of a weak [111] SIA, we discuss an emergent chiral QSL within a perturbation theory.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Kitaev honeycomb and other exotic spin models with polar molecules
    Gorshkov, Alexey V.
    Hazzard, Kaden R. A.
    Rey, Ana Maria
    MOLECULAR PHYSICS, 2013, 111 (12-13) : 1908 - 1916
  • [32] Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
    Banerjee, A.
    Bridges, C. A.
    Yan, J. -Q.
    Aczel, A. A.
    Li, L.
    Stone, M. B.
    Granroth, G. E.
    Lumsden, M. D.
    Yiu, Y.
    Knolle, J.
    Bhattacharjee, S.
    Kovrizhin, D. L.
    Moessner, R.
    Tennant, D. A.
    Mandrus, D. G.
    Nagler, S. E.
    NATURE MATERIALS, 2016, 15 (07) : 733 - +
  • [33] Clues and criteria for designing a Kitaev spin liquid revealed by thermal and spin excitations of the honeycomb iridate Na2IrO3
    Yamaji, Youhei
    Suzuki, Takafumi
    Yamada, Takuto
    Suga, Sei-ichiro
    Kawashima, Naoki
    Imada, Masatoshi
    PHYSICAL REVIEW B, 2016, 93 (17)
  • [34] Raman Scattering Signatures of Kitaev Spin Liquids in A2IrO3 Iridates with A = Na or Li
    Knolle, J.
    Chern, Gia-Wei
    Kovrizhin, D. L.
    Moessner, R.
    Perkins, N. B.
    PHYSICAL REVIEW LETTERS, 2014, 113 (18)
  • [35] Probing Majorana Wave Functions in Kitaev Honeycomb Spin Liquids with Second-Order Two-Dimensional Spectroscopy
    Qiang, Yihua
    Quito, Victor L.
    Trevisan, Thais, V
    Orth, Peter P.
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [36] Novel Chiral Quantum Spin Liquids in Kitaev Magnets
    Ralko, Arnaud
    Merino, Jaime
    PHYSICAL REVIEW LETTERS, 2020, 124 (21)
  • [37] Spin Seebeck Effect as a Probe for Majorana Fermions in Kitaev Spin Liquids
    Kato, Yasuyuki
    Nasu, Joji
    Sato, Masahiro
    Okubo, Tsuyoshi
    Misawa, Takahiro
    Motome, Yukitoshi
    PHYSICAL REVIEW X, 2025, 15 (01):
  • [38] Electrical Access to Ising Anyons in Kitaev Spin Liquids
    Pereira, Rodrigo G.
    Egger, Reinhold
    PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [39] Linear and nonlinear optical responses in Kitaev spin liquids
    Kanega, Minoru
    Ikeda, Tatsuhiko N.
    Sato, Masahiro
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [40] Majorana-Mediated Spin Transport in Kitaev Quantum Spin Liquids
    Minakawa, Tetsuya
    Murakami, Yuta
    Koga, Akihisa
    Nasu, Joji
    PHYSICAL REVIEW LETTERS, 2020, 125 (04)