Unveiling the S=3/2 Kitaev honeycomb spin liquids

被引:25
|
作者
Jin, Hui-Ke [1 ]
Natori, W. M. H. [2 ,3 ]
Pollmann, F. [4 ,5 ]
Knolle, J. [1 ,3 ,5 ]
机构
[1] Tech Univ Munich, Dept Phys TQM, James Franck Str 1, D-85748 Garching, Germany
[2] Inst Laue Langevin, BP 156,41 Ave Martyrs, F-38042 Grenoble 9, France
[3] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[4] Tech Univ Munich, Dept Phys CMT, James Franck Str 1, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, D-80799 Munich, Germany
基金
欧洲研究理事会;
关键词
QUANTUM; PHYSICS; ANYONS;
D O I
10.1038/s41467-022-31503-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, material realizations of the spin 3/2 Kitaev honeycomb model have been proposed, but the model has not been solved by either analytical or numerical methods. Here the authors report exact results for the spin 3/2 model consistent with numerical simulations, and find gapped and gapless quantum spin liquids. The S=3/2 Kitaev honeycomb model (KHM) is a quantum spin liquid (QSL) state coupled to a static Z(2) gauge field. Employing an SO(6) Majorana representation of spin3/2's, we find an exact representation of the conserved plaquette fluxes in terms of static Z(2) gauge fields akin to the S=1/2 KHM which enables us to treat the remaining interacting matter fermion sector in a parton mean-field theory. We uncover a ground-state phase diagram consisting of gapped and gapless QSLs. Our parton description is in quantitative agreement with numerical simulations, and is furthermore corroborated by the addition of a [001] single ion anisotropy (SIA) which continuously connects the gapless Dirac QSL of our model with that of the S=1/2 KHM. In the presence of a weak [111] SIA, we discuss an emergent chiral QSL within a perturbation theory.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Muon spin relaxation study of spin dynamics on a Kitaev honeycomb material H3LiIr2O6
    Yang, Yan-Xing
    Jiang, Cheng-Yu
    Huang, Liang-Long
    Zhu, Zi-Hao
    Chen, Chang-Sheng
    Wu, Qiong
    Ding, Zhao-Feng
    Tan, Cheng
    Chen, Kai-Wen
    Biswas, Pabi K.
    Hillier, Adrian D.
    Shi, You-Guo
    Liu, Cai
    Wang, Le
    Ye, Fei
    Mei, Jia-Wei
    Shu, Lei
    NPJ QUANTUM MATERIALS, 2024, 9 (01)
  • [22] Concept and realization of Kitaev quantum spin liquids
    Takagi, Hidenori
    Takayama, Tomohiro
    Jackeli, George
    Khaliullin, Giniyat
    Nagler, Stephen E.
    NATURE REVIEWS PHYSICS, 2019, 1 (04) : 264 - 280
  • [23] Transport in honeycomb lattice with random π fluxes: Implications for low-temperature thermal transport in Kitaev spin liquids
    Zhuang, Zekun
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [24] Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice
    Suzuki, Takafumi
    Yamaji, Youhei
    PHYSICA B-CONDENSED MATTER, 2018, 536 : 637 - 639
  • [25] Excitation spectrum of spin-1 Kitaev spin liquids
    Chen, Yu-Hsueh
    Genzor, Jozef
    Kim, Yong Baek
    Kao, Ying-Jer
    PHYSICAL REVIEW B, 2022, 105 (06)
  • [26] Characterizing spin-one Kitaev quantum spin liquids
    Khait, Ilia
    Stavropoulos, P. Peter
    Kee, Hae-Young
    Kim, Yong Baek
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [27] Kitaev magnetism in honeycomb RuCl3 with intermediate spin-orbit coupling
    Kim, Heung-Sik
    Shankar, Vijay V.
    Catuneanu, Andrei
    Kee, Hae-Young
    PHYSICAL REVIEW B, 2015, 91 (24):
  • [29] Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
    Rau, Jeffrey G.
    Lee, Eric Kin-Ho
    Kee, Hae-Young
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [30] Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
    Banerjee A.
    Bridges C.A.
    Yan J.-Q.
    Aczel A.A.
    Li L.
    Stone M.B.
    Granroth G.E.
    Lumsden M.D.
    Yiu Y.
    Knolle J.
    Bhattacharjee S.
    Kovrizhin D.L.
    Moessner R.
    Tennant D.A.
    Mandrus D.G.
    Nagler S.E.
    Nature Materials, 2016, 15 (7) : 733 - 740