Symmetry Restoration in Hartree-Fock-Bogoliubov Based Theories

被引:76
|
作者
Bertsch, G. F. [1 ,2 ]
Robledo, L. M. [3 ]
机构
[1] Univ Washington, Inst Nucl Theory, Seattle, WA 98915 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98915 USA
[3] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
基金
美国国家科学基金会;
关键词
GENERATOR-COORDINATE METHOD; MATRIX-ELEMENTS;
D O I
10.1103/PhysRevLett.108.042505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Pfaffian formula for projection and symmetry restoration for wave functions of the general Bogoliubov form, including quasiparticle excited states and linear combinations of them. This solves a long-standing problem in calculating states of good symmetry, arising from the sign ambiguity of the commonly used determinant formula. A simple example is given of projecting a good particle number and angular momentum from a Bogoliubov wave function in the Fock space of a single j-shell.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] HARTREE-FOCK-BOGOLIUBOV THEORY WITHOUT QUASIPARTICLE VACUA
    ROSENSTEEL, G
    PHYSICAL REVIEW A, 1981, 23 (06): : 2794 - 2801
  • [12] Relativistic Hartree-Fock-Bogoliubov Theory With Density Dependent Meson Couplings in Axial Symmetry
    Ebran, J. -P.
    Khan, E.
    Arteaga, D. Pena
    Grasso, M.
    Vretenar, D.
    NUCLEAR STRUCTURE AND DYNAMICS '09, 2009, 1165 : 289 - +
  • [13] Dielectric theorem within the Hartree-Fock-Bogoliubov framework
    Capelli, Luigi
    Colo, Gianluca
    Li, Jun
    PHYSICAL REVIEW C, 2009, 79 (05):
  • [14] Application of the gradient method to Hartree-Fock-Bogoliubov theory
    Robledo, L. M.
    Bertsch, G. F.
    PHYSICAL REVIEW C, 2011, 84 (01):
  • [15] Dynamical Hartree-Fock-Bogoliubov Approximation of Interacting Bosons
    Chong, Jacky J.
    Zhao, Zehua
    ANNALES HENRI POINCARE, 2022, 23 (02): : 615 - 673
  • [16] Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory
    Pei, J. C.
    Kruppa, A. T.
    Nazarewicz, W.
    PHYSICAL REVIEW C, 2011, 84 (02):
  • [17] Modified Hartree-Fock-Bogoliubov theory at finite temperature
    Dang, ND
    Arima, A
    PHYSICAL REVIEW C, 2003, 68 (01):
  • [18] Hartree-Fock-Bogoliubov theory of polarized Fermi systems
    Bertsch, George
    Dobaczewski, Jacek
    Nazarewicz, Witold
    Pei, Junchen
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [19] CRANKED HARTREE-FOCK-BOGOLIUBOV CALCULATIONS FOR DY ISOTOPES
    CESCATO, ML
    SUN, Y
    RING, P
    NUCLEAR PHYSICS A, 1991, 533 (03) : 455 - 475
  • [20] Hartree-Fock-Bogoliubov theory of dipolar Fermi gases
    Zhao, Cheng
    Jiang, Lei
    Liu, Xunxu
    Liu, W. M.
    Zou, Xubo
    Pu, Han
    PHYSICAL REVIEW A, 2010, 81 (06):