Symmetry Restoration in Hartree-Fock-Bogoliubov Based Theories

被引:76
|
作者
Bertsch, G. F. [1 ,2 ]
Robledo, L. M. [3 ]
机构
[1] Univ Washington, Inst Nucl Theory, Seattle, WA 98915 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98915 USA
[3] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
基金
美国国家科学基金会;
关键词
GENERATOR-COORDINATE METHOD; MATRIX-ELEMENTS;
D O I
10.1103/PhysRevLett.108.042505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Pfaffian formula for projection and symmetry restoration for wave functions of the general Bogoliubov form, including quasiparticle excited states and linear combinations of them. This solves a long-standing problem in calculating states of good symmetry, arising from the sign ambiguity of the commonly used determinant formula. A simple example is given of projecting a good particle number and angular momentum from a Bogoliubov wave function in the Fock space of a single j-shell.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Symmetry-projected Hartree-Fock-Bogoliubov equations
    Sheikh, JA
    Ring, P
    NUCLEAR PHYSICS A, 2000, 665 (1-2) : 71 - 91
  • [2] A Hartree-Fock-Bogoliubov mass formula
    Samyn, M
    Goriely, S
    Heenen, PH
    Pearson, JM
    Tondeur, F
    NUCLEAR PHYSICS A, 2002, 700 (1-2) : 142 - 156
  • [3] HARTREE-FOCK AND HARTREE-FOCK-BOGOLIUBOV CALCULATIONS OF SUPERDEFORMED BANDS
    FLOCARD, H
    CHEN, BQ
    GALL, B
    BONCHE, P
    DOBACZEWSKI, J
    HEENEN, PH
    WEISS, MS
    NUCLEAR PHYSICS A, 1993, 557 : C559 - C572
  • [4] SYMMETRY CONSTRAINED HARTREE-FOCK-BOGOLIUBOV THEORY WITH APPLICATIONS TO THE FERMION DYNAMICAL SYMMETRY MODEL
    ZHANG, WM
    FENG, DH
    WU, CL
    WU, H
    GINOCCHIO, JN
    NUCLEAR PHYSICS A, 1989, 505 (01) : 7 - 25
  • [5] A NUMERICAL PERSPECTIVE ON HARTREE-FOCK-BOGOLIUBOV THEORY
    Lewin, Mathieu
    Paul, Severine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (01): : 53 - 86
  • [6] Homogeneous Spaces in Hartree-Fock-Bogoliubov Theory
    Alvarado, Claudia D.
    Chiumiento, Eduardo
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (11)
  • [7] Global estimates for the Hartree-Fock-Bogoliubov equations
    Chong, Jacky
    Grillakis, Manoussos
    Machedon, Matei
    Zhao, Zehua
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (10) : 2015 - 2055
  • [8] Jost function formalism based on the Hartree-Fock-Bogoliubov formalism
    Mizuyama, K.
    Le, N. Nhu
    Thuy, T. Dieu
    Hao, T. V. Nhan
    PHYSICAL REVIEW C, 2019, 99 (05)
  • [9] AN EXTENSION OF THE CRANKED HARTREE-FOCK-BOGOLIUBOV THEORY
    HORIBATA, T
    LETTERE AL NUOVO CIMENTO, 1980, 28 (17): : 578 - 582
  • [10] SYMMETRY-CONSERVING HARTREE-FOCK-BOGOLIUBOV THEORY .2. NUMBER-PROJECTED CRANKED HARTREE-FOCK-BOGOLIUBOV CALCULATIONS IN THE RARE-EARTH REGION
    EGIDO, JL
    RING, P
    NUCLEAR PHYSICS A, 1982, 388 (01) : 19 - 36