Triplet FFLO superconductivity in the doped Kitaev-Heisenberg honeycomb model

被引:5
|
作者
Liu, Tianhan [1 ,2 ,3 ]
Repellin, Cecile [4 ,5 ]
Doucot, Benoit [1 ]
Regnault, Nicolas [4 ,6 ]
Le Hur, Karyn [2 ]
机构
[1] Univ Paris 06, Sorbonne Univ, LPTHE, CNRS,UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris Saclay, Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France
[3] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Paris Diderot, Univ Pierre & Marie Curie, PSL Res Univ,Lab Pierre Aigrain,Sorbonne Paris Ci, Sorbonne Univ,Ecole Normale Super,CNRS, 24 Rue Lhomond, F-75231 Paris 05, France
[5] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[6] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
SPIN; PHYSICS; STATE; GUTZWILLER; PHASES;
D O I
10.1103/PhysRevB.94.180506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We provide analytical and numerical evidence of spin-triplet Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity in the itinerantKitaev-Heisenberg model (antiferromagnetic Kitaev coupling and ferromagnetic Heisenberg coupling) on the honeycomb lattice around quarter filling. The strong spin-orbit coupling in our model leads to the emergence of six inversion symmetry centers for the Fermi surface at nonzero momenta in the first Brillouin zone. We show how the Cooper pairs condense into these nontrivial momenta, causing spatial modulation of the superconducting order parameter. Applying a Ginzburg-Landau expansion analysis, we find that the superconductivity has three separated degenerate ground states with three different spin-triplet pairings. Exact diagonalizations on finite clusters support this picture while ruling out a spin (charge) density wave.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Topological superconductivity in the extended Kitaev-Heisenberg model
    Schmidt, Johann
    Scherer, Daniel D.
    Black-Schaffer, Annica M.
    [J]. PHYSICAL REVIEW B, 2018, 97 (01)
  • [2] Spin-1 Kitaev-Heisenberg model on a honeycomb lattice
    Dong, Xiao-Yu
    Sheng, D. N.
    [J]. PHYSICAL REVIEW B, 2020, 102 (12)
  • [3] Global phase diagram of a doped Kitaev-Heisenberg model
    Okamoto, Satoshi
    [J]. PHYSICAL REVIEW B, 2013, 87 (06):
  • [4] Dynamics of the Kitaev-Heisenberg Model
    Gohlke, Matthias
    Verresen, Ruben
    Moessner, Roderich
    Pollmann, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [5] Temperature Dependence of Heat Capacity in the Kitaev-Heisenberg Model on a Honeycomb Lattice
    Suzuki, Takafumi
    Yamaji, Youhei
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (11)
  • [6] Magnetic order and spin excitations in the Kitaev-Heisenberg model on a honeycomb lattice
    Vladimirov, A. A.
    Ihle, D.
    Plakida, N. M.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 122 (06) : 1060 - 1069
  • [7] Magnetic excitations of Kitaev-Heisenberg models on honeycomb lattices
    Yamada, Takuto
    Suzuki, Takafumi
    Suga, Sei-ichiro
    [J]. PHYSICA B-CONDENSED MATTER, 2017, 525 : 91 - 93
  • [8] Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice
    Suzuki, Takafumi
    Yamaji, Youhei
    [J]. PHYSICA B-CONDENSED MATTER, 2018, 536 : 637 - 639
  • [9] Zigzag order and phase competition in expanded Kitaev-Heisenberg model on honeycomb lattice
    Yao, Xiaoyan
    [J]. PHYSICS LETTERS A, 2015, 379 (22-23) : 1480 - 1485
  • [10] Critical Properties of the Kitaev-Heisenberg Model
    Price, Craig C.
    Perkins, Natalia B.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (18)