Triplet FFLO superconductivity in the doped Kitaev-Heisenberg honeycomb model

被引:5
|
作者
Liu, Tianhan [1 ,2 ,3 ]
Repellin, Cecile [4 ,5 ]
Doucot, Benoit [1 ]
Regnault, Nicolas [4 ,6 ]
Le Hur, Karyn [2 ]
机构
[1] Univ Paris 06, Sorbonne Univ, LPTHE, CNRS,UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Paris Saclay, Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France
[3] Univ Cambridge, Cavendish Lab, TCM Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Paris Diderot, Univ Pierre & Marie Curie, PSL Res Univ,Lab Pierre Aigrain,Sorbonne Paris Ci, Sorbonne Univ,Ecole Normale Super,CNRS, 24 Rue Lhomond, F-75231 Paris 05, France
[5] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[6] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
SPIN; PHYSICS; STATE; GUTZWILLER; PHASES;
D O I
10.1103/PhysRevB.94.180506
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We provide analytical and numerical evidence of spin-triplet Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity in the itinerantKitaev-Heisenberg model (antiferromagnetic Kitaev coupling and ferromagnetic Heisenberg coupling) on the honeycomb lattice around quarter filling. The strong spin-orbit coupling in our model leads to the emergence of six inversion symmetry centers for the Fermi surface at nonzero momenta in the first Brillouin zone. We show how the Cooper pairs condense into these nontrivial momenta, causing spatial modulation of the superconducting order parameter. Applying a Ginzburg-Landau expansion analysis, we find that the superconductivity has three separated degenerate ground states with three different spin-triplet pairings. Exact diagonalizations on finite clusters support this picture while ruling out a spin (charge) density wave.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Kitaev-Heisenberg model on the star lattice: From chiral Majorana fermions to chiral triplons
    d'Ornellas, P.
    Knolle, J.
    [J]. PHYSICAL REVIEW B, 2024, 109 (09)
  • [42] Density-Matrix Renormalization Group Study of Kitaev-Heisenberg Model on a Triangular Lattice
    Shinjo, Kazuya
    Sota, Shigetoshi
    Yunoki, Seiji
    Totsuka, Keisuke
    Tohyama, Takami
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (11)
  • [43] Phase Diagram of the Kitaev-Heisenberg Model Using Various Finite-Size Clusters
    Kadosawa, Masahiro
    Nakamura, Masaaki
    Ohta, Yukinori
    Nishimoto, Satoshi
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (05)
  • [44] Comparing the influence of Floquet dynamics in various Kitaev-Heisenberg materials
    Strobel, Pascal
    Daghofer, Maria
    [J]. PHYSICAL REVIEW B, 2022, 105 (08)
  • [45] Magnetic order and spin excitations in the Kitaev–Heisenberg model on a honeycomb lattice
    A. A. Vladimirov
    D. Ihle
    N. M. Plakida
    [J]. Journal of Experimental and Theoretical Physics, 2016, 122 : 1060 - 1069
  • [46] Thermal Hall conductivity near field-suppressed magnetic order in a Kitaev-Heisenberg model
    Kumar, Aman
    Tripathi, Vikram
    [J]. PHYSICAL REVIEW B, 2023, 107 (22)
  • [47] Emergence of vortex state in the S = 1 Kitaev-Heisenberg model with single-ion anisotropy
    Singhania, Ayushi
    van den Brink, Jeroen
    Nishimoto, Satoshi
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [48] Kitaev-Heisenberg model in a magnetic field: Order-by-disorder and commensurate-incommensurate transitions
    Chern, Gia-Wei
    Sizyuk, Yuriy
    Price, Craig
    Perkins, Natalia B.
    [J]. PHYSICAL REVIEW B, 2017, 95 (14)
  • [49] Hole propagation in the Kitaev-Heisenberg model: From quasiparticles in quantum Neel states to non-Fermi liquid in the Kitaev phase
    Trousselet, Fabien
    Horsch, Peter
    Oles, Andrzej M.
    You, Wen-Long
    [J]. PHYSICAL REVIEW B, 2014, 90 (02):
  • [50] Spin-S Kitaev-Heisenberg model on the honeycomb lattice: A high-order treatment via the many-body coupled cluster method
    Georgiou, M.
    Rousochatzakis, I.
    Farnell, D. J. J.
    Richter, J.
    Bishop, R. F.
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):