Symplectic quantization of multifield generalized Proca electrodynamics

被引:4
|
作者
Diez, Veronica Errasti [1 ,2 ]
Marinkovic, Marina Krstic [3 ,4 ]
机构
[1] Excellence Cluster ORIGINS, Boltzmannstr 2, D-85748 Garching, Germany
[2] Ludwig Maximilians Univ Munchen, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany
[3] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[4] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
关键词
FADDEEV-JACKIW QUANTIZATION; PATH-INTEGRAL QUANTIZATION; NONLINEAR ELECTRODYNAMICS; DIRAC; FIELD; EQUIVALENCE; REDUCTION; FORMALISM; MASS;
D O I
10.1103/PhysRevD.105.105022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explicitly carry out the symplectic quantization of a family of multifield generalized Proca (GP) electrodynamics theories. In the process, we provide an independent derivation of the so-called secondary constraint enforcing relations-consistency conditions that significantly restrict the allowed interactions in multifield settings already at the classical level. Additionally, we unveil the existence of quantum consistency conditions, which apply in both single- and multifield GP scenarios. Our newly found conditions imply that not all classically well-defined (multi-)GP theories are amenable to quantization. The extension of our results to the most general multi-GP class is conceptually straightforward, albeit algebraically cumbersome.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Faddeev-Jackiw quantization of Proca Electrodynamics
    Pimentel, B. M.
    Zambrano, G. E. R.
    [J]. NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 267 : 183 - 185
  • [2] Hamilton formulation for generalized Proca electrodynamics using fractional derivative
    Alawaideh, Y. M.
    Al-Khamiseh, B. M.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (06) : 1571 - 1583
  • [3] Path integral quantization of generalized quantum electrodynamics
    Bufalo, R.
    Pimentel, B. M.
    Zambrano, G. E. R.
    [J]. PHYSICAL REVIEW D, 2011, 83 (04):
  • [4] PROCA ELECTRODYNAMICS AND TIRED LIGHT
    BYRNE, JC
    BURMAN, RR
    [J]. ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 37 (03): : 281 - 281
  • [5] On the Hamilton-Jacobi theory and quantization of generalized electrodynamics
    Weiss, P
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1938, 169 (A936) : 0119 - 0133
  • [6] Electrodynamics in superconductors explained by Proca equations
    Tajmar, M.
    [J]. PHYSICS LETTERS A, 2008, 372 (18) : 3289 - 3291
  • [7] Batalin-Fradkin-Vilkovisky quantization of the generalized scalar electrodynamics
    Bufalo, R.
    Pimentel, B. M.
    [J]. PHYSICAL REVIEW D, 2013, 88 (06):
  • [8] BF Quantization of MCS Proca Model
    Udristioiu, Mihaela-Tinca
    [J]. TIM14 PHYSICS CONFERENCE: PHYSICS WITHOUT FRONTIERS, 2015, 1694
  • [9] Dirac Quantization of Noncommutative Abelian Proca field
    F. Darabi
    F. Naderi
    [J]. International Journal of Theoretical Physics, 2011, 50 : 3432 - 3441
  • [10] Quantization in classical electrodynamics
    Perkovac, M
    [J]. PHYSICS ESSAYS, 2002, 15 (01) : 41 - 60