Hamilton formulation for generalized Proca electrodynamics using fractional derivative

被引:2
|
作者
Alawaideh, Y. M. [1 ]
Al-Khamiseh, B. M. [2 ]
机构
[1] Jordan Minist Educ, Dheban Sch Boys 2, Appl Phys Dept, Amman, Jordan
[2] Imra Secondary Sch Boys, Appl Phys Dept, Amman, Jordan
关键词
Hamiltonian formalism; Fractional derivatives; Proca generalized electrodynamics; INEQUALITIES;
D O I
10.1080/09720502.2021.1938990
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use fractional derivatives to reformulate the Proca equation in this study. The Riemann-Liouville fractional derivative operator is defined, and a fractional variational principle based on this definition is constructed. The formalism is generalized, and this new formulation is used in the Proca electrodynamics equation. Fractional derivatives are used to derive both the fractional Euler equations and the fractional Hamilton equations. Furthermore, we found that fractional Euler-Lagrange and fractional Hamiltonian equations yield the same result. Finally, we studied one specific example to demonstrate the findings.
引用
收藏
页码:1571 / 1583
页数:13
相关论文
共 50 条
  • [1] Hamilton formulation for the electrodynamics of generalized Maxwell using fractional derivatives
    Almalki, Adel
    Alawaideh, Yazen M.
    Al-Khamiseh, Bashar M.
    Alawaideh, Samer E.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (04) : 795 - 808
  • [2] Symplectic quantization of multifield generalized Proca electrodynamics
    Diez, Veronica Errasti
    Marinkovic, Marina Krstic
    [J]. PHYSICAL REVIEW D, 2022, 105 (10)
  • [3] An Entropy Formulation Based on the Generalized Liouville Fractional Derivative
    Ferreira, Rui A. C.
    Tenreiro Machado, J.
    [J]. ENTROPY, 2019, 21 (07)
  • [4] Hamilton-Jacobi formulation of systems within Caputo's fractional derivative
    Rabei, Eqab M.
    Almayteh, Ibtesam
    Muslih, Sami I.
    Baleanu, Dumitru
    [J]. PHYSICA SCRIPTA, 2008, 77 (01)
  • [5] On the Hamilton-Jacobi theory and quantization of generalized electrodynamics
    Weiss, P
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1938, 169 (A936) : 0119 - 0133
  • [6] On fractional Hamilton formulation within Caputo derivatives
    Baleanu, Dumitru
    Muslih, Sami I.
    Rabei, Eqab M.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 1335 - 1339
  • [7] TRANSFORMATION OF INDEPENDENT VARIABLES IN A GENERALIZED HAMILTON FORMULATION
    BAUMGARTE, J
    OSTERMEYER, GP
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (4BIS): : T16 - T18
  • [8] Generalized Hamilton system and fractional gradient system
    Wang, Peng
    Gao, Feng
    [J]. AIP ADVANCES, 2023, 13 (12)
  • [9] Generalized Hamilton's principle with fractional derivatives
    Atanackovic, T. M.
    Konjik, S.
    Oparnica, Lj
    Pilipovic, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (25)
  • [10] Fractional Hamilton formalism within Caputo's derivative
    Baleanu, Dumitru
    Agrawal, Om. P.
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1087 - 1092