Faddeev-Jackiw quantization of Proca Electrodynamics

被引:7
|
作者
Pimentel, B. M. [1 ]
Zambrano, G. E. R. [2 ]
机构
[1] UNESP Sao Paulo State Univ, Inst Fs Teor IFT UNESP, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, Brazil
[2] Univ Narino, Dept Fs, Calle 18 Carrera 50, San Juan De Pasto, Narino, Colombia
关键词
Field theory; Faddeev-Jackiw method; Constrained systems; Proca electrodynamics; CONSTRAINED SYSTEMS; FORMALISM;
D O I
10.1016/j.nuclphysbps.2015.10.100
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The generalized symplectic formalism quantization method is employed to study the gauge invariance Proca electrodynamics theory. We show that the zero modes of the symplectic matrix are the generators of the gauge transformation. After fixing the gauge, the generalized brackets are calculated.
引用
收藏
页码:183 / 185
页数:3
相关论文
共 50 条
  • [1] Extended Faddeev-Jackiw canonical quantization for the Podolsky electrodynamics
    Manavella, E. C.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (20):
  • [2] FADDEEV-JACKIW QUANTIZATION IN SUPERSPACE
    BARCELOSNETO, J
    CHEBTERRAB, ES
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 54 (01): : 133 - 138
  • [3] FADDEEV-JACKIW QUANTIZATION AND CONSTRAINTS
    BARCELOSNETO, J
    WOTZASEK, C
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (20): : 4981 - 5003
  • [4] Path integral quantization of generalized Stueckelberg electrodynamics: A Faddeev-Jackiw approach
    Caro, L. G.
    de Gracia, G. B.
    Nogueira, A. A.
    Pimentel, B. M.
    [J]. NUCLEAR PHYSICS B, 2023, 994
  • [5] Faddeev-Jackiw quantization and the path integral
    Toms, David J.
    [J]. PHYSICAL REVIEW D, 2015, 92 (10):
  • [6] Supersymmetric anyons in the Faddeev-Jackiw quantization picture
    Foussats, A
    Repetto, C
    Zandron, OP
    Zandron, OS
    [J]. ANNALS OF PHYSICS, 1998, 268 (02) : 225 - 245
  • [7] Faddeev-Jackiw quantization of massive tensor fields
    BarcelosNeto, J
    Cabo, A
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 74 (04): : 731 - 735
  • [8] EXTENDED FADDEEV-JACKIW CANONICAL QUANTIZATION FOR THE (1+1)-DIMENSIONAL NONRELATIVISTIC ELECTRODYNAMICS
    Manavella, E. C.
    [J]. ANALES AFA, 2021, 31 (04): : 127 - 134
  • [9] FADDEEV-JACKIW QUANTIZATION OF SIEGEL CHIRAL OSCILLATOR
    WOTZASEK, C
    [J]. PHYSICAL REVIEW D, 1992, 46 (06): : 2734 - 2736
  • [10] Path integral quantization corresponding to Faddeev-Jackiw canonical quantization
    Liao, Leng
    Huang, Yong-Chang
    [J]. PHYSICAL REVIEW D, 2007, 75 (02):