On the nitsche conjecture for harmonic mappings in R2 and R3

被引:25
|
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 8100, Montenegro
关键词
Harmonic Mapping; Quasiconformal Mapping; Ring Domain; Annular Region; Extremal Length;
D O I
10.1007/BF02762382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give the new inequality related to the J. C. C. Nitsche conjecture (see [6]). Moreover, we consider the two- and three-dimensional case. Let A(r, 1) = {z : r < vertical bar z vertical bar < 1}. Nitsche's conjecture states that if there exists a univalent harmonic mapping from an annulus A(r, 1) to an annulus A(s, 1), then 8 is at most 2r/(r(2) + 1). Lyzzaik's result states that s < t where t is the length of the Grotzsch's ring domain associated with A(r, 1) (see [5]). Weitsman's result states that s <= 1/(1+1/2(r log r)(2)) (see [8]). Our result for two-dimensional space states that s <= 1/(1+1/2 log(2) r) which improves Weitsman's bound for all r, and Lyzzaik's bound for r close to 1. For three-dimensional space the result states that s <= 1/(r - logr).
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [21] Hausdorff and minimal distances between parametric freeforms in R2 and R3
    Elberl, Gershon
    Grandine, Tom
    [J]. ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 191 - +
  • [22] The doodle of a finitely determined map germ from R2 to R3
    Marar, W. L.
    Nuno-Ballesteros, J. J.
    [J]. ADVANCES IN MATHEMATICS, 2009, 221 (04) : 1281 - 1301
  • [24] Interactive Visualization for Singular Fibers of Functions f : R3 → R2
    Sakurai, Daisuke
    Saeki, Osamu
    Carr, Hamish
    Wu, Hsiang-Yun
    Yamamoto, Takahiro
    Duke, David
    Takahashi, Shigeo
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 945 - 954
  • [25] Modified mini finite element for the stokes problem in R2 or R3
    Kim, Y
    Lee, S
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (2-3) : 261 - 272
  • [26] On the range of R2 or R3-valued harmonic morphisms
    Duheille, F
    [J]. ANNALS OF PROBABILITY, 1998, 26 (01): : 308 - 315
  • [27] THE REEB GRAPH OF A MAP GERM FROM R3 TO R2 WITH ISOLATED ZEROS
    Batista, Erica Boizan
    Ferreira Costa, Joao Carlos
    Nuno-Ballesteros, Juan J.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) : 319 - 348
  • [28] Countable Decompositions of R2 and R3 (vol 5, pg 325, 1990)
    Komjath, Peter
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (03) : 1165 - 1165
  • [29] Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3
    Bramble, James H.
    Pasciak, Joseph E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 247 : 209 - 230
  • [30] Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation
    Annadurai, Narendran
    Malina, Lukas
    Malohlava, Jakub
    Hajduch, Marian
    Das, Viswanath
    [J]. BIOCHIMIE, 2022, 200 : 79 - 86