Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3

被引:30
|
作者
Bramble, James H. [1 ]
Pasciak, Joseph E. [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Helmholtz equation; Perfectly matched layer; Cartesian PML; Variational stability; PERFECTLY MATCHED LAYER; ABSORPTION;
D O I
10.1016/j.cam.2012.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the application of a perfectly matched layer (PML) technique applied in Cartesian geometry to approximate solutions of the acoustic scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift ("stretching") and leads to a variable complex coefficient equation for the acoustic wave posed on an infinite domain, the complement of the bounded scatterer. The use of Cartesian geometry leads to a PML operator with simple coefficients, although, still complex symmetric (non-Hermitian). The PML reformulation results in a problem whose solution coincides with the original solution inside the PML layer while decaying exponentially outside. The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). This paper provides new stability estimates for the Cartesian PML approximations both on the infinite and the truncated domain. We first investigate the stability of the infinite PML approximation as a function of the PML strength sigma(0). This is done for PML methods which involve continuous piecewise smooth stretching as well as piecewise constant stretching functions. We next introduce a truncation parameter M which determines the size of the PML layer. Our analysis shows that the truncated PML problem is stable provided that the product of Mao is sufficiently large, in which case the solution of the problem on the truncated domain converges exponentially to that of the original problem in the domain of interest near the scatterer. This justifies the simple computational strategy of selecting a fixed PML layer and increasing sigma(0) to obtain the desired accuracy. The results of numerical experiments varying M and sigma(0) are given which illustrate the theoretically predicted behavior. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 230
页数:22
相关论文
共 50 条