Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network

被引:31
|
作者
Tu, Xiaoguang [1 ]
Xie, Mei [3 ]
Gao, Jingjing [3 ]
Ma, Zheng [1 ]
Chen, Daiqiang [4 ]
Wang, Qingfeng [5 ]
Finlayson, Samuel G. [6 ,7 ]
Ou, Yangming [8 ]
Cheng, Jie-Zhi [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[2] Chang Gung Univ, Dept & Grad Inst Elect Engn, 259 Wen Hwa 1st Rd, Kwei Shan Tao Yuan 333, Taiwan
[3] Univ Elect Sci & Technol China, Sch Elect Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[4] Third Mil Med Univ, Chongqing 400038, Peoples R China
[5] Univ Sci & Technol China, Sch Software Engn, Hefei 230026, Anhui, Peoples R China
[6] Harvard Med Sch, Dept Syst Biol, 10 Shattuck St, Boston, MA 02115 USA
[7] Harvard MIT Div Hlth Sci & Technol HST, 77 Massachusetts Ave,E25-518, Cambridge, MA 02139 USA
[8] Harvard Med Sch, Dept Radiol, 1 Autumn St, Boston, MA 02215 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
COMPUTER-AIDED DIAGNOSIS; GROUND-GLASS NODULES; CLASSIFICATION; PROBABILITY; MANAGEMENT; LESIONS; ADENOCARCINOMAS; SEGMENTATION; PERFORMANCE; GUIDELINES;
D O I
10.1038/s41598-017-08040-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing. We implemented two computerized texture analysis schemes, classification and regression, to automatically categorize solid, part-solid and non-solid nodules in CT scans, with hierarchical features in each case learned directly by the CNN model. To show the effectiveness of our CNN-based CADx, an established method based on histogram analysis (HIST) was implemented for comparison. The experimental results show significant performance improvement by the CNN model over HIST in both classification and regression tasks, yielding nodule classification and rating performance concordant with those of practicing radiologists. Adoption of CNN-based CADx systems may reduce the inter-observer variation among screening radiologists and provide a quantitative reference for further nodule analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] The impact of radiological features of part-solid nodules on the choice of surgical mode and prognosis
    Wang, Guige
    Zhao, Ke
    Li, Shanqing
    ASIAN JOURNAL OF SURGERY, 2020, 43 (09) : 963 - 964
  • [42] Risk factors and prognosis of non-solid nodules in a lung cancer screening program
    Campo Ezquibela, Aranzazu
    Yuste Olmos, Paula Elena
    Ocon De Miguel, Maria Del Mar
    Alcaide Ocana, Ana Belen
    De Torres Tajes, Juan Pablo
    Berto Botella, Juan Antonio
    Pueyo Villoslada, Jesus
    Lozano Escario, Maria Dolores
    Zulueta Frances, Javier
    EUROPEAN RESPIRATORY JOURNAL, 2019, 54
  • [43] Diagnostic accuracy and complications of CT-guided core needle lung biopsy of solid and part-solid lesions
    Yun, Sam
    Kang, Hee
    Park, Sekyoung
    Kim, Beom Su
    Park, Jung Gu
    Jung, Min Jung
    BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1088):
  • [44] Lung Adenocarcinomas Manifesting as Radiological Part-Solid Nodules Define a Special Clinical Subtype
    Ye, T.
    Deng, L.
    Wang, S.
    Xiang, J.
    Zhang, Y.
    Hu, H.
    Sun, Y.
    Li, Y.
    Shen, L.
    Xie, L.
    Gu, W.
    Zhao, Y.
    Fu, F.
    Peng, W.
    Chen, H.
    Shen, Y.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S546 - S547
  • [45] The effect of late-phase contrast enhancement on semi-automatic software measurements of CT attenuation and volume of part-solid nodules in lung adenocarcinomas
    Cohen, Julien G.
    Goo, Jin Mo
    Yoo, Roh-Eul
    Park, Su Bin
    van Ginneken, Bram
    Ferretti, Gilbert R.
    Lee, Chang Hyun
    Park, Chang Min
    EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (06) : 1174 - 1180
  • [46] Lung Adenocarcinomas Manifesting as Radiological Part-Solid Nodules Define a Special Clinical Subtype
    Ye, Ting
    Deng, Lin
    Wang, Shengping
    Xiang, Jiaqing
    Zhang, Yawei
    Hu, Hong
    Sun, Yihua
    Li, Yuan
    Shen, Lei
    Xie, Li
    Gu, Wenchao
    Zhao, Yue
    Fu, Fangqiu
    Peng, Weijun
    Chen, Haiquan
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (04) : 617 - 627
  • [47] Prognostic Implication of Surgical Treatment for the Dominant Lung Adenocarcinoma Associated with Part-Solid Nodules
    Hwang, Y.
    Jeon, J. H.
    Cho, S.
    Kim, K.
    Jheon, S.
    JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (10) : S899 - S899
  • [48] Non-solid neoplastic nodules are associated with low PD L1 expression
    Stella, Giulia Maria
    Bortolotto, Chandra
    Antonacci, Filippo
    Dore, Roberto
    Coretti, Manuela
    Antonio, Ciuffreda
    Sergio, Carnevale
    Patrizia, Morbini
    EUROPEAN RESPIRATORY JOURNAL, 2019, 54
  • [49] A radiomics nomogram for invasiveness prediction in lung adenocarcinoma manifesting as part-solid nodules with solid components smaller than 6 mm
    Zhang, Teng
    Zhang, Chengxiu
    Zhong, Yan
    Sun, Yingli
    Wang, Haijie
    Li, Hai
    Yang, Guang
    Zhu, Quan
    Yuan, Mei
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [50] Telangiectatic pulmonary arteriovenous malformation presenting as a suspected malignant part-solid nodule
    Ufuk, Furkan
    Vurgun, Sercan
    Alver, Kadir H.
    BRITISH JOURNAL OF HOSPITAL MEDICINE, 2022, 83 (10)