Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network

被引:31
|
作者
Tu, Xiaoguang [1 ]
Xie, Mei [3 ]
Gao, Jingjing [3 ]
Ma, Zheng [1 ]
Chen, Daiqiang [4 ]
Wang, Qingfeng [5 ]
Finlayson, Samuel G. [6 ,7 ]
Ou, Yangming [8 ]
Cheng, Jie-Zhi [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[2] Chang Gung Univ, Dept & Grad Inst Elect Engn, 259 Wen Hwa 1st Rd, Kwei Shan Tao Yuan 333, Taiwan
[3] Univ Elect Sci & Technol China, Sch Elect Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[4] Third Mil Med Univ, Chongqing 400038, Peoples R China
[5] Univ Sci & Technol China, Sch Software Engn, Hefei 230026, Anhui, Peoples R China
[6] Harvard Med Sch, Dept Syst Biol, 10 Shattuck St, Boston, MA 02115 USA
[7] Harvard MIT Div Hlth Sci & Technol HST, 77 Massachusetts Ave,E25-518, Cambridge, MA 02139 USA
[8] Harvard Med Sch, Dept Radiol, 1 Autumn St, Boston, MA 02215 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
COMPUTER-AIDED DIAGNOSIS; GROUND-GLASS NODULES; CLASSIFICATION; PROBABILITY; MANAGEMENT; LESIONS; ADENOCARCINOMAS; SEGMENTATION; PERFORMANCE; GUIDELINES;
D O I
10.1038/s41598-017-08040-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing. We implemented two computerized texture analysis schemes, classification and regression, to automatically categorize solid, part-solid and non-solid nodules in CT scans, with hierarchical features in each case learned directly by the CNN model. To show the effectiveness of our CNN-based CADx, an established method based on histogram analysis (HIST) was implemented for comparison. The experimental results show significant performance improvement by the CNN model over HIST in both classification and regression tasks, yielding nodule classification and rating performance concordant with those of practicing radiologists. Adoption of CNN-based CADx systems may reduce the inter-observer variation among screening radiologists and provide a quantitative reference for further nodule analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CT Screening for Lung Cancer: Part-Solid Nodules in Baseline and Annual Repeat Rounds
    Henschke, Claudia I.
    Yip, Rowena
    Smith, James P.
    Wolf, Andrea S.
    Flores, Raja M.
    Liang, Mingzhu
    Salvatore, Mary M.
    Liu, Ying
    Xu, Dong Ming
    Yankelevitz, David F.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (06) : 1176 - 1184
  • [22] Radiomics to Predict Invasiveness of Lung Adenocarcinoma in Part-Solid Nodules
    Wu, Linyu
    Gao, Chen
    Xu, Maosheng
    RADIOLOGY, 2021, 300 (03) : E348 - E348
  • [23] Magnetic Resonance Imaging of Part-solid Nodules A Pilot Study
    Koo, Chi Wan
    White, Darin B.
    Lingineni, Ravi K.
    Peikert, Tobias
    McGee, Kiaran P.
    Sigmund, Eric E.
    Tsang, Victoria
    Carter, Rickey E.
    Sykes, Anne-Marie G.
    JOURNAL OF THORACIC IMAGING, 2016, 31 (01) : 2 - 10
  • [24] Pulmonary adenocarcinomas appearing as part-solid ground-glass nodules: Is measuring solid component size a better prognostic indicator?
    Eui Jin Hwang
    Chang Min Park
    Youngjin Ryu
    Sang Min Lee
    Young Tae Kim
    Young Whan Kim
    Jin Mo Goo
    European Radiology, 2015, 25 : 558 - 567
  • [25] Pulmonary adenocarcinomas appearing as part-solid ground-glass nodules: Is measuring solid component size a better prognostic indicator?
    Hwang, Eui Jin
    Park, Chang Min
    Ryu, Youngjin
    Lee, Sang Min
    Kim, Young Tae
    Kim, Young Whan
    Goo, Jin Mo
    EUROPEAN RADIOLOGY, 2015, 25 (02) : 558 - 567
  • [26] Preinvasive and Invasive Lung Adenocarcinoma Appearing as Part-Solid Ground-Glass Nodules: Differentiation with CT Value and Solid-Part Diameter
    Zhang, Dongmei
    Li, Cheng
    Luo, Qing-Quan
    Wang, Guangshun
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (08) : 1817 - 1822
  • [27] Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study
    Wu, Guangyao
    Woodruff, Henry C.
    Shen, Jing
    Refaee, Turkey
    Sanduleanu, Sebastian
    Ibrahim, Abdalla
    Leijenaar, Ralph T. H.
    Wang, Rui
    Xiong, Jingtong
    Bian, Jie
    Wu, Jianlin
    Lambin, Philippe
    RADIOLOGY, 2020, 297 (02) : 451 - 458
  • [28] Accuracy of Cytological Diagnosis for Malignant Nodule in Participants with Nonsolid Nodules and Part-Solid Nodules With Solid Component≤5 mm
    Triphuridet, N.
    Yip, R.
    Henschke, C. I.
    Yankelevitz, D. F.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S194 - S194
  • [29] Frequency of Lung Adenocarcinoma in Patients with Growing Nonsolid and Part-Solid Nodules with Solid Component ≤5 mm
    Triphuridet, N.
    Yip, R.
    Henschke, C. I.
    Yankelevitz, D. F.
    JOURNAL OF THORACIC ONCOLOGY, 2022, 17 (09) : S192 - S192
  • [30] Identifying invasive lung adenocarcinomas manifesting as part-solid nodules by measuring the size of multiple solid portions and maximum solid portions
    Lin, Chenchen
    Liu, Haiyang
    Huang, Shaohui
    Wang, Ziqi
    Xu, Zhiwei
    Guo, Zhiping
    Zhang, Xiaoju
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2025,