Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network

被引:31
|
作者
Tu, Xiaoguang [1 ]
Xie, Mei [3 ]
Gao, Jingjing [3 ]
Ma, Zheng [1 ]
Chen, Daiqiang [4 ]
Wang, Qingfeng [5 ]
Finlayson, Samuel G. [6 ,7 ]
Ou, Yangming [8 ]
Cheng, Jie-Zhi [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[2] Chang Gung Univ, Dept & Grad Inst Elect Engn, 259 Wen Hwa 1st Rd, Kwei Shan Tao Yuan 333, Taiwan
[3] Univ Elect Sci & Technol China, Sch Elect Engn, West Hitech Zone, Xiyuan Ave 2006, Chengdu 611731, Sichuan, Peoples R China
[4] Third Mil Med Univ, Chongqing 400038, Peoples R China
[5] Univ Sci & Technol China, Sch Software Engn, Hefei 230026, Anhui, Peoples R China
[6] Harvard Med Sch, Dept Syst Biol, 10 Shattuck St, Boston, MA 02115 USA
[7] Harvard MIT Div Hlth Sci & Technol HST, 77 Massachusetts Ave,E25-518, Cambridge, MA 02139 USA
[8] Harvard Med Sch, Dept Radiol, 1 Autumn St, Boston, MA 02215 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
COMPUTER-AIDED DIAGNOSIS; GROUND-GLASS NODULES; CLASSIFICATION; PROBABILITY; MANAGEMENT; LESIONS; ADENOCARCINOMAS; SEGMENTATION; PERFORMANCE; GUIDELINES;
D O I
10.1038/s41598-017-08040-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a computer-aided diagnosis system (CADx) for the automatic categorization of solid, part-solid and non-solid nodules in pulmonary computerized tomography images using a Convolutional Neural Network (CNN). Provided with only a two-dimensional region of interest (ROI) surrounding each nodule, our CNN automatically reasons from image context to discover informative computational features. As a result, no image segmentation processing is needed for further analysis of nodule attenuation, allowing our system to avoid potential errors caused by inaccurate image processing. We implemented two computerized texture analysis schemes, classification and regression, to automatically categorize solid, part-solid and non-solid nodules in CT scans, with hierarchical features in each case learned directly by the CNN model. To show the effectiveness of our CNN-based CADx, an established method based on histogram analysis (HIST) was implemented for comparison. The experimental results show significant performance improvement by the CNN model over HIST in both classification and regression tasks, yielding nodule classification and rating performance concordant with those of practicing radiologists. Adoption of CNN-based CADx systems may reduce the inter-observer variation among screening radiologists and provide a quantitative reference for further nodule analysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network
    Xiaoguang Tu
    Mei Xie
    Jingjing Gao
    Zheng Ma
    Daiqiang Chen
    Qingfeng Wang
    Samuel G. Finlayson
    Yangming Ou
    Jie-Zhi Cheng
    Scientific Reports, 7
  • [2] Non-solid and part-solid pulmonary nodules on CT scanning
    Ferretti, G.
    Felix, L.
    Serra-Tosio, G.
    Brambilla, C.
    Moro-Sibilot, D.
    Brichon, P. Y.
    Coulomb, M.
    Lantuejoul, S.
    REVUE DES MALADIES RESPIRATOIRES, 2007, 24 (10) : 1265 - 1276
  • [3] Solid, Part-Solid, or Non-Solid? Classification of Pulmonary Nodules in Low-Dose Chest Computed Tomography by a Computer-Aided Diagnosis System
    Jacobs, Colin
    van Rikxoort, Eva M.
    Scholten, Ernst Th.
    de Jong, Pim A.
    Prokop, Mathias
    Schaefer-Prokop, Cornelia
    van Ginneken, Bram
    INVESTIGATIVE RADIOLOGY, 2015, 50 (03) : 168 - 173
  • [4] Management of Part-Solid Nodules
    Bommart, Sebastien
    Kovacsik, Helene Vernhet
    Pujol, Jean Louis
    RADIOLOGY, 2013, 268 (01) : 306 - 306
  • [5] Measurement of Multiple Solid Portions in Part-Solid Nodules for T Categorization: Evaluation of Prognostic Implication
    Kim, Hyungjin
    Goo, Jin Mo
    Suh, Young Joo
    Hwang, Eui Jin
    Park, Chang Min
    Kim, Young Tae
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (12) : 1864 - 1872
  • [6] Transient Part-Solid Nodules Detected at Screening Thin-Section CT for Lung Cancer: Comparison with Persistent Part-Solid Nodules
    Lee, Sang Min
    Park, Chang Min
    Goo, Jin Mo
    Lee, Chang Hyun
    Lee, Hyun Ju
    Kim, Kwang Gi
    Kang, Mi-Jin
    Lee, In Sun
    RADIOLOGY, 2010, 255 (01) : 242 - 251
  • [7] Automatic detection of large pulmonary solid nodules in thoracic CT images
    Setio, Arnaud A. A.
    Jacobs, Colin
    Gelderblom, Jaap
    van Ginneken, Bram
    MEDICAL PHYSICS, 2015, 42 (10) : 5642 - 5653
  • [8] An integrated convolutional neural network for classifying small pulmonary solid nodules
    Mei, Mengqing
    Ye, Zhiwei
    Zha, Yunfei
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [9] Part-Solid Nodules: Two Steps Forward ...
    Naidich, David P.
    RADIOLOGY, 2010, 255 (01) : 16 - 18
  • [10] A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules
    Weng, Q.
    Zhou, L.
    Wang, H.
    Hui, J.
    Chen, M.
    Pang, P.
    Zheng, L.
    Xu, M.
    Wang, Z.
    Ji, J.
    CLINICAL RADIOLOGY, 2019, 74 (12) : 933 - 943