Monte Carlo uncertainty analyses for integral beryllium experiments

被引:7
|
作者
Fischer, U
Perel, RL
Tsige-Tamirat, H
机构
[1] Forschungszentrum Karlsruhe, Inst Kern Energietech, D-76021 Karlsruhe, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
Monte Carlo technique; point detector sensitivities; beryllium;
D O I
10.1016/S0920-3796(00)00232-5
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 50 条
  • [31] Path integral grand canonical Monte Carlo
    Wang, QY
    Johnson, JK
    Broughton, JQ
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (13): : 5108 - 5117
  • [32] ON PATH INTEGRAL MONTE-CARLO SIMULATIONS
    HERMAN, MF
    BRUSKIN, EJ
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (10): : 5150 - 5155
  • [33] THE MONTE-CARLO TRAJECTORY INTEGRAL METHOD
    SOCHA, JB
    KRUMHANSL, JA
    PHYSICA B & C, 1985, 134 (1-3): : 142 - 147
  • [34] PATH INTEGRAL MONTE-CARLO FOR FERMIONS
    KUKI, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 16 - PHYS
  • [35] Unbiased Monte Carlo estimation of the reciprocal of an integral
    Booth, Thomas E.
    NUCLEAR SCIENCE AND ENGINEERING, 2007, 156 (03) : 403 - 407
  • [36] Path integral Monte Carlo simulation of vortices
    Nordborg, H
    Blatter, G
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 1817 - 1818
  • [37] Path integral Monte carlo methods for fermions
    Ceperley, DM
    MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS, 1996, 49 : 443 - 482
  • [38] Permutation Sampling in Path Integral Monte Carlo
    Massimo Boninsegni
    Journal of Low Temperature Physics, 2005, 141 : 27 - 46
  • [39] Wavelet formulation of path integral Monte Carlo
    Cho, AE
    Doll, JD
    Freeman, DL
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (13): : 5971 - 5977
  • [40] Restricted configuration path integral Monte Carlo
    Yilmaz, A.
    Hunger, K.
    Dornheim, T.
    Groth, S.
    Bonitz, M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (12):