Monte Carlo uncertainty analyses for integral beryllium experiments

被引:7
|
作者
Fischer, U
Perel, RL
Tsige-Tamirat, H
机构
[1] Forschungszentrum Karlsruhe, Inst Kern Energietech, D-76021 Karlsruhe, Germany
[2] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
Monte Carlo technique; point detector sensitivities; beryllium;
D O I
10.1016/S0920-3796(00)00232-5
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 50 条
  • [21] Monte Carlo simulations for target analyses
    Zhang, Hui
    Lou, Yun
    Li, Pengyu
    Cao, Yanfeng
    Hou, Lina
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (SUPPL. 1): : 1009 - 1012
  • [22] USING GRETL FOR MONTE CARLO EXPERIMENTS
    Adkins, Lee C.
    JOURNAL OF APPLIED ECONOMETRICS, 2011, 26 (05) : 880 - 885
  • [23] Monte Carlo Experiments: Design and Implementation
    Paxton, Pamela
    Curran, Patrick J.
    Bollen, Kenneth A.
    Kirby, Jim
    Chen, Feinian
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (02) : 287 - 312
  • [24] Monte Carlo simulations for ANKE experiments
    Zychor, I
    ACTA PHYSICA POLONICA B, 2002, 33 (01): : 521 - 526
  • [25] Monte Carlo analysis of sedimentation experiments
    Borries Demeler
    Emre Brookes
    Colloid and Polymer Science, 2008, 286 : 129 - 137
  • [26] Monte Carlo analysis of sedimentation experiments
    Demeler, Borries
    Brookes, Emre
    COLLOID AND POLYMER SCIENCE, 2008, 286 (02) : 129 - 137
  • [27] Monte-carlo uncertainty analyses of pulsed activation in the National Ignition Facility gunite shielding
    Sanz, J
    Falquina, R
    Rodriguez, A
    Cabellos, O
    Reyes, S
    Latkowski, JF
    FUSION SCIENCE AND TECHNOLOGY, 2003, 43 (03) : 473 - 477
  • [28] Using Monte Carlo Simulation to Propagate Processing Parameter Uncertainty to the Statistical Analyses of Biomechanical Trajectories
    Pataky, Todd C.
    MOTOR CONTROL, 2023, 27 (01) : 112 - 122
  • [29] The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty
    Cox, Maurice G.
    Siebert, Bernd R. L.
    METROLOGIA, 2006, 43 (04) : S178 - S188
  • [30] Permutation sampling in Path Integral Monte Carlo
    Boninsegni, M
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 141 (1-2) : 27 - 46