Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion

被引:8
|
作者
Coeurjolly, Jean-Francois [1 ]
Porcu, Emilio [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
[2] Univ Tecn Federico Santa Maria, Dept Math, Valparaiso, Chile
关键词
Complex-valued stochastic process; Hurst exponent estimation; Multivariate fractional Brownian motion; VARIABLES; LIMIT;
D O I
10.1016/j.spl.2017.04.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the fractional Brownian motion to the complex-valued case. The model is defined as the centered, zero at zero, self-similar complex-valued stochastic process with stationary increments. We present a few properties of this new model and propose an estimation of its main index, the Hurst exponent characterizing the self-similarity property. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条