Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion

被引:8
|
作者
Coeurjolly, Jean-Francois [1 ]
Porcu, Emilio [2 ]
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
[2] Univ Tecn Federico Santa Maria, Dept Math, Valparaiso, Chile
关键词
Complex-valued stochastic process; Hurst exponent estimation; Multivariate fractional Brownian motion; VARIABLES; LIMIT;
D O I
10.1016/j.spl.2017.04.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the fractional Brownian motion to the complex-valued case. The model is defined as the centered, zero at zero, self-similar complex-valued stochastic process with stationary increments. We present a few properties of this new model and propose an estimation of its main index, the Hurst exponent characterizing the self-similarity property. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [41] On optimal scale upper bound in wavelet-based estimation for hurst index of fractional Brownian motion
    Kawasaki, Shuhji
    Morita, Hiroyoshi
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2005, 8 (02) : 195 - 214
  • [42] Estimation of the drift of fractional Brownian motion
    Es-Sebaiy, Khalifa
    Ouassou, Idir
    Ouknine, Youssef
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (14) : 1647 - 1653
  • [43] Fractional Brownian motion and parameter estimation
    Janak, Josef
    [J]. 34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 359 - 364
  • [44] Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint
    Neuman, Eyal
    Rosenbaum, Mathieu
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [45] On the maximum of the discretely sampled fractional Brownian motion with small Hurst parameter
    Borovkov, Konstantin
    Zhitlukhin, Mikhail
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [46] Simulation paradoxes related to a fractional Brownian motion with small Hurst index
    Makogin, Vitalii
    [J]. MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2016, 3 (02): : 181 - 190
  • [47] STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION WITH HURST EXPONENT H > 1/4: A ROUGH PATH METHOD BY ANALYTIC EXTENSION
    Unterberger, Jeremie
    [J]. ANNALS OF PROBABILITY, 2009, 37 (02): : 565 - 614
  • [48] Empirical mode decomposition, fractional Gaussian noise and hurst exponent estimation
    Rilling, G
    Flandrin, P
    Gonçalvès, P
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 489 - 492
  • [49] Relationship of second-order lacunarity, Hurst exponent, Brownian motion, and pattern organization
    Feagin, RA
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 328 (3-4) : 315 - 321
  • [50] WEAK SYMMETRIC INTEGRALS WITH RESPECT TO THE FRACTIONAL BROWNIAN MOTION
    Binotto, Giulia
    Nourdin, Ivan
    Nualart, David
    [J]. ANNALS OF PROBABILITY, 2018, 46 (04): : 2243 - 2267