Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data

被引:5
|
作者
Liu, Zhishen [1 ]
Zhou, Yan [1 ]
机构
[1] Ocean Univ China, Ocean Remote Sensing Inst, Qingdao 266003, Peoples R China
关键词
INHERENT OPTICAL-PROPERTIES; AVIRIS DATA; SEA;
D O I
10.3788/COL201109.060102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1) hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay. The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmospheric correction, and principal component analysis method combined with scatter diagram and rnaximum likelihood classification is used for seabed classification. The diffuse attenuation coefficient K-d is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water. K-d obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry. The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1) Hyperspectral Data
    Bannari, Abderrazak
    Staenz, Karl
    Champagne, Catherine
    Khurshid, K. Shahid
    [J]. REMOTE SENSING, 2015, 7 (06) : 8107 - 8127
  • [32] Potential of hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation
    Bannari, A.
    Khurshid, K. S.
    Staenz, K.
    Schwarz, J.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 : S139 - S157
  • [33] Shallow water substrate mapping using hyperspectral remote sensing
    Fearns, P. R. C.
    Klonowski, W.
    Babcock, R. C.
    England, P.
    Phillips, J.
    [J]. CONTINENTAL SHELF RESEARCH, 2011, 31 (12) : 1249 - 1259
  • [34] SHALLOW-WATER BATHYMETRY USING COMBINED LIDAR AND PASSIVE MULTISPECTRAL SCANNER DATA
    LYZENGA, DR
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1985, 6 (01) : 115 - 125
  • [35] Multispectral remote sensing of shallow water bathymetry: Ground truth accuracy and interference
    Roberts, A
    Bach, K
    Coburn, C
    Haefele, M
    Walter, F
    [J]. ACCURACY 2000, PROCEEDINGS, 2000, : 553 - 560
  • [36] THE GF-2 CAPABILITY ANALYSIS IN SHALLOW WATER REMOTE SENSING BATHYMETRY
    Shen, Wei
    Ji, Qian
    Qiu, Yaowei
    Wu, Zhongqiang
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8253 - 8256
  • [37] Statistical Combination of Spatial Interpolation and Multispectral Remote Sensing for Shallow Water Bathymetry
    Kanno, Ariyo
    Koibuchi, Yukio
    Isobe, Masahiko
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (01) : 64 - 67
  • [38] Integration of Hyperspectral Imagery and Sparse Sonar Data for Shallow Water Bathymetry Mapping
    Cheng, Liang
    Ma, Lei
    Cai, Wenting
    Tong, Lihua
    Li, Manchun
    Du, Peijun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3235 - 3249
  • [39] Deriving Bathymetry from Multispectral Remote Sensing Data
    Hernandez, William J.
    Armstrong, Roy A.
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2016, 4 (01):
  • [40] Spectral signatures of teak (Tectona grandis L.) using hyperspectral (EO-1) data
    Ecology Laboratory, Department of Botany, M.S. University of Baroda, Baroda 390 002, India
    [J]. Curr. Sci, 2007, 9 (1291-1296):