Integration of Hyperspectral Imagery and Sparse Sonar Data for Shallow Water Bathymetry Mapping

被引:16
|
作者
Cheng, Liang [1 ,2 ,3 ,4 ]
Ma, Lei [1 ,4 ]
Cai, Wenting [5 ]
Tong, Lihua [1 ,4 ]
Li, Manchun [1 ,2 ,4 ]
Du, Peijun [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr South Sea Studies, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Univ, Dept Geog Informat Sci, Nanjing 210093, Jiangsu, Peoples R China
[5] Guangdong Elect Power Design Inst, China Energy Engn Grp, Guangzhou 510600, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bathymetry mapping; data integration; hyperspectral image; sparse sonar data; NONLINEAR DIMENSIONALITY REDUCTION; HIGH-RESOLUTION; SPATIAL INTERPOLATION; DAILY RAINFALL; LIDAR DATA; MANIFOLD; DEPTHS; MODEL; SEA; RECONSTRUCTION;
D O I
10.1109/TGRS.2014.2372787
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate and rapid mapping of shallow water bathymetry is essential for the safe operation of many industries. Here, we propose a new approach to shallow water bathymetry mapping that integrates hyperspectral image and sparse sonar data. Our approach includes two main steps: dimensional reduction of Hyperion images and interpolation of sparse sonar data. First, we propose a new algorithm, i.e., a sonar-based semisupervised Laplacian eigenmap (LE) using both spatial and spectral distance, for dimensional reduction of Hyperion imagery. Second, we develop a new algorithm to interpolate sparse sonar points using a 3-D information diffusion method with homogeneous regions. These homogeneous regions are derived from the segmentation of the dimensional reduction results based on depth. We conduct the experimental comparison to confirm the applicability of the dimensional reduction and interpolation methods and their advantages over previously described methods. The proposed dimensional reduction method achieves better dimensional results than unsupervised method and semisupervised LE method (using only spectral distance). Furthermore, the bathymetry retrieved using the proposed method is more precise than that retrieved using common interpolation methods.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 50 条
  • [1] SHALLOW WATER BATHYMETRY MAPPING USING HYPERSPECTRAL DATA
    Kakuta, Satomi
    Ariyasu, Emiko
    Takeda, Tomomi
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1539 - 1542
  • [2] Fusion of Bathymetric LiDAR and Hyperspectral Imagery for Shallow Water Bathymetry
    Pan, Zhigang
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    Shrestha, Ramesh
    Carter, Bill
    Hauser, Darren
    Singhania, Abhinav
    Sartori, Michael
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3792 - 3795
  • [3] Coregistration of Hyperspectral Imagery With Photogrammetry for Shallow-Water Mapping
    Lovas, Havard Snefjella
    Hasler, Oliver
    Langer, Dennis D.
    Sorensen, Asgeir J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Comparison of bathymetry and seagrass mapping with hyperspectral imagery and airborne bathymetric lidar in a shallow estuarine environment
    Pan, Zhigang
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    Starek, Michael
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (03) : 516 - 536
  • [5] SHALLOW WATER BATHYMETRY MAPPING FROM UAV IMAGERY BASED ON MACHINE LEARNING
    Agrafiotis, P.
    Skarlatos, D.
    Georgopoulos, A.
    Karantzalos, K.
    [J]. UNDERWATER 3D RECORDING AND MODELLING: A TOOL FOR MODERN APPLICATIONS AND CH RECORDING, 2019, 42-2 (W10): : 2 - 9
  • [6] A Combined Machine Learning and Residual Analysis Approach for Improved Retrieval of Shallow Bathymetry from Hyperspectral Imagery and Sparse Ground Truth Data
    Alevizos, Evangelos
    [J]. REMOTE SENSING, 2020, 12 (21) : 1 - 16
  • [7] SPARSE MODELING FOR HYPERSPECTRAL IMAGERY WITH LIDAR DATA FUSION FOR SUBPIXEL MAPPING
    Castrodad, Alexey
    Khuon, Timothy
    Rand, Robert
    Sapiro, Guillermo
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7275 - 7278
  • [8] The role of digital bathymetry in mapping shallow marine vegetation from hyperspectral image data
    Gagnon, P.
    Scheibling, R. E.
    Jones, W.
    Tully, D.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (03) : 879 - 904
  • [9] Unsupervised Classification of Riverbed Types for Bathymetry Mapping in Shallow Rivers Using UAV-Based Hyperspectral Imagery
    Kwon, Siyoon
    Gwon, Yeonghwa
    Kim, Dongsu
    Seo, Il Won
    You, Hojun
    [J]. REMOTE SENSING, 2023, 15 (11)
  • [10] Bathymetry Retrieval from Hyperspectral Remote Sensing Data in Optical-Shallow Water
    Ma, Sheng
    Tao, Zui
    Yang, Xiaofeng
    Yu, Yang
    Zhou, Xuan
    Li, Ziwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1205 - 1212