SHALLOW WATER BATHYMETRY MAPPING USING HYPERSPECTRAL DATA

被引:0
|
作者
Kakuta, Satomi [1 ]
Ariyasu, Emiko [1 ]
Takeda, Tomomi [2 ]
机构
[1] Asia Air Survey Co Ltd, Kawasaki, Kanagawa, Japan
[2] Japan Space Syst, Tokyo, Japan
关键词
Satellite Derived Bathymetry; inversion method; semi-analytical model; simulation; Bottom Index;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using airborne hyperspectral images and field survey data of Yamada Bay, northeast Japan, we examined to improve the water depth accuracy by enhancing benthic type classification accuracy and generalize the method. Also, the method was applied to airborne hyperspectral data of Akajima Island, southwest Japan and the versatility of the method was verified. Compared to field survey data in Yamada Bay, the determination coefficient of water depth improved from 0.19 to 0.50, however, RMSE increased from 2.7 m to 3.3 m. In Aka-jima Island, the determination coefficient improved from 0.34 to 0.74, and RMSE decreased from 2.6 m to 1.3 m.
引用
收藏
页码:1539 / 1542
页数:4
相关论文
共 50 条
  • [1] Integration of Hyperspectral Imagery and Sparse Sonar Data for Shallow Water Bathymetry Mapping
    Cheng, Liang
    Ma, Lei
    Cai, Wenting
    Tong, Lihua
    Li, Manchun
    Du, Peijun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3235 - 3249
  • [2] The role of digital bathymetry in mapping shallow marine vegetation from hyperspectral image data
    Gagnon, P.
    Scheibling, R. E.
    Jones, W.
    Tully, D.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (03) : 879 - 904
  • [3] Hyperspectral Bathymetry Retrieval using a Newly Developed Normalized Algorithm in Shallow Water
    Li, Hongga
    Cheng, Peng
    Huang, Xiaoxia
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (10) : 2425 - 2436
  • [4] Hyperspectral Bathymetry Retrieval using a Newly Developed Normalized Algorithm in Shallow Water
    Hongga Li
    Peng Cheng
    Xiaoxia Huang
    [J]. Journal of the Indian Society of Remote Sensing, 2021, 49 : 2425 - 2436
  • [5] Bathymetry Retrieval from Hyperspectral Remote Sensing Data in Optical-Shallow Water
    Ma, Sheng
    Tao, Zui
    Yang, Xiaofeng
    Yu, Yang
    Zhou, Xuan
    Li, Ziwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1205 - 1212
  • [6] Mapping shallow, benthic communities using hyperspectral, remotely sensed data: A test of habitat classification using multiple sources of bathymetry
    Gagnon, Patrick
    Jones, William
    Scheibling, Robert
    [J]. GLOBAL DEVELOPMENTS IN ENVIRONMENTAL EARTH OBSERVATION FROM SPACE, 2006, : 839 - +
  • [7] Shallow water bathymetry using a DVL-based mapping strategy
    Bucci, Alessandro
    Zacchini, Leonardo
    Secciani, Nicola
    Ridolfi, Alessandro
    [J]. OCEANS 2023 - LIMERICK, 2023,
  • [8] Fusion of Bathymetric LiDAR and Hyperspectral Imagery for Shallow Water Bathymetry
    Pan, Zhigang
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    Shrestha, Ramesh
    Carter, Bill
    Hauser, Darren
    Singhania, Abhinav
    Sartori, Michael
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3792 - 3795
  • [9] Phase Speed Inversion for Shallow Water Bathymetry Mapping
    Thida, Worakrit
    Li Voti, Roberto
    Danworaphong, Sorasak
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2024,
  • [10] Shallow water substrate mapping using hyperspectral remote sensing
    Fearns, P. R. C.
    Klonowski, W.
    Babcock, R. C.
    England, P.
    Phillips, J.
    [J]. CONTINENTAL SHELF RESEARCH, 2011, 31 (12) : 1249 - 1259