Integration of Hyperspectral Imagery and Sparse Sonar Data for Shallow Water Bathymetry Mapping

被引:16
|
作者
Cheng, Liang [1 ,2 ,3 ,4 ]
Ma, Lei [1 ,4 ]
Cai, Wenting [5 ]
Tong, Lihua [1 ,4 ]
Li, Manchun [1 ,2 ,4 ]
Du, Peijun [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr South Sea Studies, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Univ, Dept Geog Informat Sci, Nanjing 210093, Jiangsu, Peoples R China
[5] Guangdong Elect Power Design Inst, China Energy Engn Grp, Guangzhou 510600, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bathymetry mapping; data integration; hyperspectral image; sparse sonar data; NONLINEAR DIMENSIONALITY REDUCTION; HIGH-RESOLUTION; SPATIAL INTERPOLATION; DAILY RAINFALL; LIDAR DATA; MANIFOLD; DEPTHS; MODEL; SEA; RECONSTRUCTION;
D O I
10.1109/TGRS.2014.2372787
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate and rapid mapping of shallow water bathymetry is essential for the safe operation of many industries. Here, we propose a new approach to shallow water bathymetry mapping that integrates hyperspectral image and sparse sonar data. Our approach includes two main steps: dimensional reduction of Hyperion images and interpolation of sparse sonar data. First, we propose a new algorithm, i.e., a sonar-based semisupervised Laplacian eigenmap (LE) using both spatial and spectral distance, for dimensional reduction of Hyperion imagery. Second, we develop a new algorithm to interpolate sparse sonar points using a 3-D information diffusion method with homogeneous regions. These homogeneous regions are derived from the segmentation of the dimensional reduction results based on depth. We conduct the experimental comparison to confirm the applicability of the dimensional reduction and interpolation methods and their advantages over previously described methods. The proposed dimensional reduction method achieves better dimensional results than unsupervised method and semisupervised LE method (using only spectral distance). Furthermore, the bathymetry retrieved using the proposed method is more precise than that retrieved using common interpolation methods.
引用
收藏
页码:3235 / 3249
页数:15
相关论文
共 50 条
  • [41] Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine
    Li, Jiwei
    Knapp, David E.
    Lyons, Mitchell
    Roelfsema, Chris
    Phinn, Stuart
    Schill, Steven R.
    Asner, Gregory P.
    [J]. REMOTE SENSING, 2021, 13 (08)
  • [42] Shallow water substrate mapping using hyperspectral remote sensing
    Fearns, P. R. C.
    Klonowski, W.
    Babcock, R. C.
    England, P.
    Phillips, J.
    [J]. CONTINENTAL SHELF RESEARCH, 2011, 31 (12) : 1249 - 1259
  • [43] Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data
    Xue, Zhaohui
    Du, Peijun
    Li, Jun
    Su, Hongjun
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 1 - 15
  • [44] An algorithm to retrieve coastal water optical properties, bathymetry, and bottom albedo from hyperspectral imagery
    Castrodad-Carrau, Alexey
    Velez-Reyes, Miguel
    Goodman, James A.
    [J]. PHOTONICS FOR PORT AND HARBOR SECURITY II, 2006, 6204
  • [45] SHALLOW-WATER BATHYMETRY MODELS USING MULTISPECTRAL DIGITAL DATA
    CLARK, RK
    FAY, TH
    WALKER, CL
    [J]. JOURNAL OF IMAGING TECHNOLOGY, 1990, 16 (05): : 170 - 175
  • [46] Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral and Hyperspectral Imagery
    Marcello, Javier
    Eugenio, Francisco
    Martin, Javier
    Marques, Ferran
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [47] BATHYMETRY MAPPING USING HYPERSPECTRAL DATA: A CASE STUDY OF YAMADA BAY, NORTHEAST JAPAN
    Ariyasu, E.
    Kakuta, S.
    Takeda, T.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 61 - 64
  • [48] Hybrid Artificial Neural Networks for Modeling Shallow-Water Bathymetry via Satellite Imagery
    Kaloop, Mosbeh R.
    El-Diasty, Mohammed
    Hu, Jong Wan
    Zarzoura, Fawzi
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [49] Estimation of Shallow Water Bathymetry using IRS-Multispectral Imagery of Odisha Coast, India
    Pattanaik, Amitansu
    Sahu, Kartik
    Bhutiyani, M. R.
    [J]. INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15), 2015, 4 : 173 - 181
  • [50] Hybrid Artificial Neural Networks for Modeling Shallow-Water Bathymetry via Satellite Imagery
    Kaloop, Mosbeh R.
    El-Diasty, Mohammed
    Hu, Jong Wan
    Zarzoura, Fawzi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60