Variation and Minkowski dimension of fractal interpolation surface

被引:54
|
作者
Feng, Zhigang [1 ,2 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales
关键词
bivariate continuous function; variation; iterated function system; fractal interpolation surface; Minkowski dimension;
D O I
10.1016/j.jmaa.2008.03.075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fractal interpolation surface on the rectangular domain is discussed in this paper. We study the properties of the oscillation and the variation of bivariate continuous functions. Then we discuss the special properties of bivariate fractal interpolation function, and estimate the value of its variation. Using the relation between the Minkowski dimension of the graph of continuous function and its variation, we obtain the exact value of the Minkowski dimension of the fractal interpolation surface. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 334
页数:13
相关论文
共 50 条
  • [31] Fractal interpolation of machined surface profiles
    Zhongguo Kuangye Daxue Xuebao, 2 (118-121):
  • [32] Fractal interpolation of machined surface profiles
    Chen, Guoan
    Ge, Shirong
    Zhang, Xiaoyun
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 1999, 28 (02): : 118 - 121
  • [33] A NEW CONSTRUCTION OF THE FRACTAL INTERPOLATION SURFACE
    Ri, Songil
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [34] Analysis of Multi-Scale Fractal Dimension for Image Interpolation
    YAO Xun-xiang
    ZHANG Yun-feng
    LIU Geng
    BAO Fang-xun
    ZHANG Cai-ming
    Computer Aided Drafting,Design and Manufacturing, 2015, (03) : 23 - 30
  • [35] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    Yang, Bing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 278 - 290
  • [36] Box dimension and fractional integral of linear fractal interpolation functions
    Ruan, Huo-Jun
    Su, Wei-Yi
    Yao, Kui
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 187 - 197
  • [37] BOX DIMENSION OF FRACTAL INTERPOLATION SURFACES WITH VERTICAL SCALING FUNCTION
    Jiang, Lai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (03)
  • [38] Fractal interpolation fitness based on BOX dimension's pretreatment
    Wang, Qin
    Jin, Min
    Xi, Lifeng
    Meng, Zhaoling
    THEORETICAL ADVANCES AND APPLICATIONS OF FUZZY LOGIC AND SOFT COMPUTING, 2007, 42 : 520 - +
  • [39] FRACTAL DIMENSION OF FRACTURED SURFACE OF ROCKS
    SHI, XJ
    NIU, ZR
    CHINESE SCIENCE BULLETIN, 1991, 36 (21): : 1845 - 1846
  • [40] Fractal dimension of metallic fracture surface
    Piotr Kotowski
    International Journal of Fracture, 2006, 141 : 269 - 286