Short-term traffic flow prediction in smart multimedia system for Internet of Vehicles based on deep belief network

被引:61
|
作者
Kong, Fanhui [1 ]
Li, Jian [1 ]
Jiang, Bin [2 ,3 ]
Song, Houbing [3 ]
机构
[1] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Embry Riddle Aeronaut Univ, Dept Elect Comp Software & Syst Engn, Daytona Beach, FL 32114 USA
关键词
Chaotic time series prediction; Traffic flow data in multimedia system; Internet of Vehicles (IoVs); Restricted Boltzmann Machine (RBM); NEURAL-NETWORK; MODEL; TIME; MACHINES;
D O I
10.1016/j.future.2018.10.052
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the multimedia system for Internet of Vehicles (IoVs), accurate traffic flow information processing and feedback can give drivers guidance. In traditional information processing for IoVs, few researches deal with traffic flow information processing by deep learning. Specially, most of the existing prediction technologies adopt shallow neural network, and their models for chaotic time series are prone to be restricted by multiple parameters. Over the last few years, the dawning of the big data era creates opportunities for the intelligent traffic control and management. In this paper, we take Restricted Boltzmann Machine (RBM) as the method for traffic flow prediction, which is a typical algorithm based on deep learning architecture. Considering traffic big data aggregation in IoVs, multimedia technologies provide enough real sample data for model training. RBM constructs the long-term model of polymorphic for chaotic time series, using phase space reconstruction to recognize the data. To the best of our knowledge, it is the first time apply RBM model to short-term traffic flow prediction, which can improve the performance of multimedia system in IoVs. Moreover, experimental results show that the proposed method has superior performance than traditional shallow neural network prediction methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:460 / 472
页数:13
相关论文
共 50 条
  • [41] Short-Term Traffic Flow Prediction Based on Graph Convolutional Network Embedded LSTM
    Huang, Yanguo
    Zhang, Shuo
    Wen, Junlin
    Chen, Xinqiang
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2020 - TRAFFIC AND BIKE/PEDESTRIAN OPERATIONS, 2020, : 159 - 168
  • [42] Short-term traffic flow prediction based on clustering algorithm and graph neural network
    Zhang, Xi-Jun
    Yu, Guang-Jie
    Cui, Yong
    Shang, Ji-Yang
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (06): : 1593 - 1600
  • [43] Short-term airport traffic flow prediction based on lstm recurrent neural network
    Gao W.
    Wang Z.
    Wang, Zhengyi (cauc_wzy@163.com), 1600, The Aeronautical and Astronautical Society of the Republic of China (49): : 299 - 307
  • [44] Error Correction and Wavelet Neural Network Based Short-term Traffic Flow Prediction
    Pan, Yulin
    Wang, Dong
    Li, Xiaohong
    Xiao, Zhu
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENT COMMUNICATION, 2015, 16 : 83 - 86
  • [45] Prediction for short-term traffic flow based on elman neural network optimized by CPSO
    Niu, Zhonghai
    Jia, Yuanhua
    Zhang, Liangliang
    Liao, Cheng
    Metallurgical and Mining Industry, 2015, 7 (09): : 997 - 1003
  • [46] Short Term Traffic Flow Prediction Based on Deep Learning
    Li, JiaWen
    Wang, JingSheng
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2457 - 2469
  • [47] Short-term prediction of traffic flow using a binary neural network
    Hodge, Victoria J.
    Krishnan, Rajesh
    Austin, Jim
    Polak, John
    Jackson, Tom
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1639 - 1655
  • [48] Short-Term Traffic Flow Prediction with Recurrent Mixture Density Network
    Chen, Mingjian
    Chen, Rui
    Cai, Fu
    Li, Wanli
    Guo, Naikun
    Li, Guangyun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [49] Short-term Traffic Flow Prediction with LSTM Recurrent Neural Network
    Kang, Danqing
    Lv, Yisheng
    Chen, Yuan-yuan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [50] Short-term prediction of traffic flow using a binary neural network
    Victoria J. Hodge
    Rajesh Krishnan
    Jim Austin
    John Polak
    Tom Jackson
    Neural Computing and Applications, 2014, 25 : 1639 - 1655